APPENDIX 1:

ESTIMATING DIFFERENTIALS IN THE TEACHER-BASED COST OF PUBLIC SCHOOL EDUCATION

Interim report to the National Treasury, $13{ }^{\text {th }}$ November, $2004{ }^{1}$
Servaas van der Berg
Department of Economics
University of Stellenbosch

Introduction

This paper briefly reports on the calculations undertaken with the aid of various datasets to arrive at estimates of educational cost differentials between beneficiaries from different race and income groups and by urban-rural location. Given the history of these differentials, and the results of the previous incidence analysis undertaken by the same author for the Department of Finance in 1999/2000 (see particularly Van der Berg 2000), the focus fell on the race-based differences. In brief, it was found that the race differentials were strongly reduced in this period, continuing a process that started immediately after the transition, through the equalisation of pupil-teacher-ratios between schools. There is still a large differential remaining, though, of about 28% rather than 71%, which is based on the differentials in the quality of teachers as measured by qualification levels and experience. This differential is likely to remain more enduring because of the difficulty of getting well qualified teachers into poor schools, particularly in rural areas, and is only moderated somewhat by the shift of black students into formerly white schools, a process that also is nearing its natural limits.

It is likely that the impact of the shift in teachers between schools that is reflected in teacherpupils ratios would have had a considerable further impact on the targeting incidence of school spending, which was already commendable in 1997 because of almost universal access to education. This is likely to be reflected in the next step in the fiscal expenditure incidence analysis, to be completed by the end of this year.

Previous estimates: How well targeted is education spending?

[^0]Targeting accuracy can be summarised in the concentration index and the Kakwani progressivity index. The former is similar to the Gini coefficient, where a value of zero indicates complete equality of public expenditure. However, concentration curves, unlike Lorenz curves, can lie above the diagonal (the poorest quintile can receive more than one fifth of benefits from public expenditure, but not of income), thus the area above the diagonal contributes to negative values, where

Concentration Index = $1-2 \mathrm{x}$ (Area under concentration curve)
and
Kakwani Progressivity Index = Gini Coefficient - Concentration Index

We shall confine our attention here to the concentration index. Where it is negative, spending is per capita progressive or targeted, i.e. strongly equity-enhancing. The last three columns of Table 1 show the concentration indices for education in 1993, 1995 and 1997, based on the earlier study, from which the shift in spending is evident. Also clear is that South African school education spending is quite well targeted in international comparison with other developing countries.

Table 1: Concentration indices for public spending on education in SA compared to a sample of developing countries, 1990s

	Developing country sample			South Africa		
	Mean	Range	Sample size	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 7}$
Education:						
Primary	-0.14	-0.44 to 0.19	34
Secondary	0.12	-0.23 to 0.72	38
All schools		0.079	-0.016	-0.078
Tertiary	0.39	0.04 to 0.76	31	0.261	0.235	0.223
All education	0.01	-0.27 to 0.30	25	$\mathbf{0 . 1 1 3}$	$\mathbf{0 . 0 3 0}$	$\mathbf{- 0 . 0 2 3}$

Concentration Index $=1-2 \times$ Area under concentration curve
Source: Own calculations, based on applying geometry (i.e. assuming straight lines between observation rather than fitting curves to the data). These calculations are based on decile data. The calculations were based on the distribution of individuals, not households. Deciles/quintiles are equal sized in terms of households, not individuals.
Source: Developing country data from Yaqub 1999, Tables 2 and 5

South Africa's -0.023 in 1997 for all levels of education combined is somewhat below the mean of 0.01 for the 25 countries for which this information was available in Yaqub’s (1999) sample, indicating that South African education spending is better targeted than most, despite
the poorly targeted university spending. Because spending is higher per rich child than per poor child, South Africa's primary education concentration index is likely to be worse than average, but South Africa's surprisingly high secondary education participation rates may imply somewhat better targeting than in most developing countries with poor access to secondary education, despite the cost differentials which still applied between white and black students.

How important are unit cost figures for determining educational fiscal incidence?

Internationally, fiscal incidence studies usually make the implicit assumption that unit costs do not differ between beneficiaries. In discussing benefit incidence analysis in Africa, CastroLeal et al (1998; see also Demery 2000) identify three steps in the analysis:
"* Estimating the unit cost per person, or unit subsidy ..., of providing a service.

* Imputing the unit subsidy to households or individuals who are identified (usually from household surveys) as users of the service. Individuals who use a subsidized public service in effect gain an in-kind transfer. Benefit incidence measures the distribution of this transfer across the population.
* Aggregating individuals (or households) into subgroups of the population to compare distribution of the subsidy among different groups."

This essentially implies that the distribution of beneficiaries per service is the crucial step for determining benefit incidence for that particular service, and that the aggregate cost of the service then enters as a weight in aggregating all the different services. This methodology is used despite the fact that it is well known that the value (or the cost) of any particular public service provided to different members of a society often differs substantially across individuals, and, more importantly, often differs systematically between groups of individuals, e.g. urban and rural dwellers, or between different provinces. The latter fact is sometimes acknowledged in some benefit incidence studies, where administrative division between provinces allow a breakdown of unit costs by province, but the more important ruralurban differential is usually ignored because of difficulty of obtaining such data. Moreover, this would also further increase the implicit confusion in the benefit incidence analysis: Cost of delivery in rural areas may sometimes be very high, but the value (quality of the service) may be very low. The costs approach is nevertheless the one followed in such studies.

In South Africa, the nature of the apartheid legacy, particularly in education cost structures, made it imperative in earlier work on fiscal incidence to deal extensively with cost
differentials between beneficiaries. Yet these differentials were even by 1995 much reduced. The figure below sets out the concentration curves for actual education spending in 1995, versus the curve that would have applied had there been no cost differentials. As can be seen, cost differentials still had a considerable impact, and rather than a concentration index of -0.124 , the actual concentration index for 1995 was -0.016 . Thus, measuring cost differentials has a considerable impact on measured targeting accuracy. It increased the concentration index by 0.108, a considerable proportion compared to the estimated actual reduction of 0.157 in the index between 1993 and 1997. Disregarding cost differentials is, in education at least, not yet warranted and would only be once differentials in the public cost of education have been much further reduced than was the case in 1995.

New cost estimates

The datasets at our disposal unfortunately suffered from various deficiencies, some of which could perhaps be overcome, but that would require far more time and effort. For one, theY were poorly linked and because of confused numbering, linking attempts often failed (provincial and national emis numbers often differ or are used inconsistently, examination centre numbers are not all linked to emis numbers, and neither could persal pay point numbers or component numbers all be linked to emis numbers). As a consequence, the datasets individually often provided useful information, but as soon as linking was attempted, a large proportion of schools were dropped from the analysis. The uncertainty here lies in whether such schools a reduction in the sample was randomly distributed. Precisely those schools and
provinces experiencing the worst education management also often had the most common data problems.

A second constraint was that a large proportion of some of the administrative data was of poor quality (e.g. many schools recorded school fees of 50 cents per annum, and some more than R1 million). Total pupil numbers did not match between datasets containing race distribution and those showing age distribution. Consequently, where race data had to be used, all these schools where this difference in pupil numbers was more than 10 were dropped from the dataset. In many cases former department was also not shown, thus considerably reducing the sample for which we could obtain data based on either race or former department.

The datasets used were the Annual School Survey of 2002; data obtained from the national department of education through the Education Foundation on school management, teachers and students; persal data for most teachers in the system, but not linked to schools; and persal data for a sample of 100 schools (500 primary and 500 secondary) in each province, However, it turned out that this last sample was firstly not random (schools were selected according to the ease of matching the school data to the persal data rather than through random sampling); some of the matching was wrong, so that the same persal numbers were sometimes linked to schools in different provinces. All these duplicates were dropped, as well as all the schools in which such duplicates occurred, considerably reducing the sample size. Also, the Persal datasets did not contain the true full cost of teachers to the state, as the state's contribution to pension funds and medical aid was not included. Consequently, the gross salaries plus fringe benefits, transport and housing subsidies, where these still applied, were used, on the assumption that the full costs to the state are likely to be approximately proportional to this. In addition, we also obtained a previous analysis of Persal data for the National Department of Education by Crouch and Gustaffson, as well as the systemic school evaluation. These datasets were only used for comparison purposes.

Most of the data relates to 2002, although the analysis is aimed at understanding the situation in 2000. However, as will be shown, teacher racial cost structures hardly changed between 1997 and 2002, so it appears that the use of the 2002 datasets would not fundamental affect the conclusions. The more important shifts in pupil-teacher ratios had been completed by 2000, thus little would have changed in the regard between 2000 and 2002. The previous study was also largely based on analysis of a 1997 dataset and conclusions then also drawn
for 1993 and 1995, so the interval of half a decade between the primary datasets is maintained (1997 to 2002, rather than 1995 to 2000).

The previous incidence study for National Treasury, undertaken in 1999/2000, pointed out that there were two important sources of cost differentials, historically largely based on race. One part was the difference in teacher-pupil ratios that applied in different schools and had been reduced but not yet eliminated by 1997. The other was the difference in the cost per teacher, which reflects a mixture of differences in post levels, qualifications and experience that are captured in the teacher remuneration structures. Earlier, discriminatory teacher salaries and promotion possibilities also affected both these aspects of teacher costs, but by 1997 that had been eliminated.

By 2000, all differentials in school post provisioning had been eliminated, so that an important source of differentials in cost per pupil had been eliminated. However, one aspect remained, viz. that primary teacher-pupil ratios were higher than secondary ones and primary school salaries lower, and poorer pupils are more likely to be in primary schools. This differences has to be incorporated in the analysis.

Regarding the cost differentials between teachers, the Persal dataset we had for employees in the public education sector allowed an analysis of some of the factors that determine gross salaries. Unfortunately, these could not all be linked to individual schools, so that it is not possible to show how these differ across schools. But some analysis was nevertheless possible.

Firstly, it was apparent that there are large cost differentials between teachers in different provinces and of different rate groups. However, a large part of these differentials can be explained by differences in qualification levels (REQV).The tables below show provincial and racial gross salaries plus benefits (excluding the state contribution to pension funds and medical aid) per annum.

Table 2: Annual cost of full-time permanent CS educators by race and province, 2002 (including gross salary, fringe benefits, transport and housing subsidy, but not state contribution to pension fund)

	Black	Coloured	Indian	White	Total
Eastern Cape	R 70 329	R 83 918	R 93 723	R 98 086	72857.68
Free State	R 73 655	R 81 455	R 95 541	R 97 415	77625.16
Gauteng	R 82 922	R 87 136	R 92 809	R 98 853	89142.74
Kwazulu-Natal	R 75 308	R 86 561	R 95 863	R 99 468	80213.41
Mpumalanga	R 75 819	R 84 740	R 92 435	R 96 810	78509.29
Northern Cape	R 70 309	R 77 340	R 124 536	R 92 848	79333.67
Limpopo	R 73 944	R 69 560	R 93 012	R 98531	R 74 574
Northwest	R 71562	R 80 392	R 95 301	R 97 727	R 73 945
Western Cape	R 82 472	R 87 231	R 100 681	R 100 366	R 89623
Total	R 74 127	R 85 310	R 95 473	R 98521	R 78 730

The white/black differential of 33% found here is larger than that implied by a more careful analysis of the Persal dataset by Gustafsson for 2001, where this differential was only 23%. As the subsequent analysis is largely based on the same Persal data as shown here, there has to be a suspicion that, if anything, the cost differentials are somewhat exagerated. Thus, the results would be conservative in terms of measuring the accuracy of targeting, if they are based on cost differentials that favour the rich more than is actually the case.

Table 3: Qualification levels (mean REQV) of full-time permanent CS educators by race and province, 2002 (Matriculation or equivalent only=REQV10, each additional year of tertiary education adds one unit to the REQV level)

	Black	Coloured	Indian	White	Total
Eastern Cape	12.85	13.35	14.27	14.14	12.96
Free State	12.99	13.33	14.82	14.22	13.19
Gauteng	13.43	13.61	14.17	14.41	13.81
Kwazulu-Natal	13.19	13.65	14.60	14.27	13.48
Mpumalanga	13.29	13.35	14.03	14.35	13.43
Northern Cape	12.86	13.19	15.00	14.07	13.32
Limpopo	13.30	13.03	14.14	14.36	13.33
Northwest	12.76	13.60	14.07	14.41	12.92
Western Cape	13.62	13.48	14.27	14.35	13.70
Total	$\mathbf{1 3 . 1 1}$	$\mathbf{1 3 . 4 4}$	$\mathbf{1 4 . 5 3}$	$\mathbf{1 4 . 3 3}$	$\mathbf{1 3 . 3 3}$

Table 4: Qualification levels (REQV) of full-time permanent CS educators by race, 2002 (Matriculation or equivalent only=REQV10, each additional year of tertiary education adds one unit to the REQV level)

	Black	Coloured	Indian	White	Total
Numbers:					
REQV10	1604	6	2	4	1616
REQV11	11945	1237	18	1	13201
REQV12	45084	3466	23	210	48783
REQV13	105844	9968	773	4517	121102
REQV14	47972	9616	4749	20088	82425
REQV15	18034	2827	2329	8598	31788
REQV16	4950	913	1557	3237	10657
REQV17	271	87	163	718	1239
Total	$\mathbf{2 3 5} \mathbf{7 0 4}$	$\mathbf{2 8} \mathbf{1 2 0}$	$\mathbf{9 6 1 4}$	$\mathbf{3 7 3 7 3}$	$\mathbf{3 1 0} \mathbf{8 1 1}$
Percentage:					
REQV10	0.7%	0.0%	0.0%	0.0%	0.5%
REQV11	5.1%	4.4%	0.2%	0.0%	4.2%
REQV12	19.1%	12.3%	0.2%	0.6%	15.7%
REQV13	44.9%	35.4%	8.0%	12.1%	39.0%
REQV14	20.4%	34.2%	49.4%	53.8%	26.5%
REQV15	7.7%	10.1%	24.2%	23.0%	10.2%
REQV16	2.1%	3.2%	16.2%	8.7%	3.4%
REQV17	0.1%	0.3%	1.7%	1.9%	0.4%
Total	$\mathbf{1 0 0 . 0 \%}$				

Based on the above, if black mean salaries ${ }^{2}$ at each REQV level were to apply, and if all race groups had the white REQV levels, mean salaries by race would have been as follows:

Blacks	R 88 272
Coloureds	R 96 609
Indians	R 93 419
Whites	R 98522
Total	R 91770

[^1]Based on these data, 58% of the black salary deficit to whites and 86 of the coloured deficit can be explained by the qualification level of teachers alone. Indian salaries are actually higher than those of whites, considering their REQV levels.

The figures above, however, do not consider the impact of post level. Post provisioning is now standard across all former departments, thus the structure of posts is consistent across schools. We now turn to investigating the relationship between salary, race, post level, qualification level and province by way of OLS regression analysis, with the dependent variable being the natural log of salary for all permanent full-time CS educators.

Table 5: Regressions showing effect of race, post level, qualification and province on the natural log of gross income (gross salary, fringe benefits, transport and housing subsidies, but excluding employer pension and medical aid contribution), 2002
Dependent variable: Natural log of Gross Annual income

	Regressions: All			Regressions: Blacks only		
	$\begin{gathered} \hline \text { Regression } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Regression } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Regression } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Regression } \\ 4 \end{gathered}$	$\begin{gathered} \text { Regression } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Regression } \\ 6 \\ \hline \end{gathered}$
Whites	0.139	0.267	0.123			
	(98.83)**	(178.23)**	(82.00)**			
Indian	0.132	0.279	0.129			
	(52.80)**	(99.71)**	(49.45)**			
Coloureds	0.093	0.131	0.087			
	(63.60)**	(77.51)**	(45.05)**			
Post level 2	-0.205	-0.432	-0.219	-0.595	-0.439	-0.549
	(1.26)	(8.88)**	(1.35)	(2.57)*	(8.28)**	(2.35)*
Post level 3	0.057	-0.127	0.044	-0.317	-0.121	-0.270
	(0.35)	(2.61)**	(0.27)	(1.37)	(2.28)*	(1.16)
Post level 4	0.230	0.052	0.221	-0.130	0.070	-0.093
	(1.41)	(1.06)	(1.36)	(0.56)	(1.31)	(0.40)
Post level 5	0.408	0.279	0.394	0.044	0.294	0.091
	(2.50)*	(5.73)**	(2.42)*	(0.19)	(5.53)**	(0.39)
Post level 6	0.690	0.572	0.680	0.363	0.633	0.401
	(4.19)**	(10.42)**	(4.15)**	(1.56)	(10.43)**	(1.71)
Post level 7	0.768	-0.060	0.759	-0.243	-0.015	-0.236
	(3.32)**	(0.81)	(3.30)**	(0.74)	(0.18)	(0.72)
Post level 8	-0.155	-0.103	-0.140	-0.503	-0.087	-0.493
	(0.55)	(0.80)	(0.50)	(1.54)	(0.66)	(1.49)
Post level 9	0.000	-0.202	0.000	0.000	-0.207	0.000
	(.)	(2.21)*	(.)	(.)	(2.13)*	(.)
Post level 10	0.000	-0.197	0.000	0.000	-0.174	0.000
	(.)	(3.43)**	(.)	(.)	(2.81)**	(.)
REQV10	-0.740		-0.743	-0.734		-0.734
	(127.94)**		(128.32)**	(125.04)**		(124.91)**
REQV11	-0.387		-0.384	-0.379		-0.383
	(182.78)**		(180.67)**	(167.62)**		(169.76)**
REQV12	-0.137		-0.141	-0.140		-0.136
	(110.58)**		(113.18)**	(106.10)**		(103.05)**
REQV14	0.111		0.107	0.113		0.117
	(100.91)**		(97.19)**	(87.39)**		(90.70)**
REQV15	0.183		0.176	0.175		0.186
	(119.19)**		(114.00)**	(91.24)**		(96.80)**
REQV17	0.216		0.206	0.202		0.220
	(87.68)**		(83.81)**	(58.54)**		(63.68)**
REQV17	0.000		0.000	0.000		0.000
	(.)		(.)	(.)		(.)
REQV18	0.122		0.129	0.107		0.101
	(0.53)		(0.56)	(0.46)		(0.43)
Eastern Cape			-0.022	-0.030	-0.092	
			(16.45)**	(20.82)**	(56.43)**	
Free State			0.026	0.028	-0.021	
			(13.64)**	(13.66)**	(9.04)**	
Gauteng			0.052	0.080	0.081	
			(32.34)**	(42.24)**	(36.83)**	
Kwazulu-Natal			0.010	0.005	-0.023	
			(7.08)**	(3.26)**	(13.23)**	
Mpumalanga			0.011	0.009	0.001	
			(5.93)**	(4.43)**	(0.46)	
National department			0.000	0.000	0.000	
			(.)	(.)	(.)	

Northern Cape			-0.029	-0.013	-0.071	
			$(8.46)^{* *}$	(1.94)	$(8.93)^{* *}$	
Northwest			0.035	0.037	-0.032	
			$(20.16)^{* *}$	$(20.31)^{* *}$	$(15.32)^{* *}$	
Western Cape			0.029	0.024	0.052	
			$(13.18)^{* *}$	$(5.70)^{* *}$	$(10.73)^{* *}$	
Constant	11.302	11.510	11.310	11.681	11.536	11.640
	$(69.23)^{* *}$	$(236.64)^{* *}$	$(69.62)^{* *}$	$(50.41)^{* *}$	$(217.75)^{* *}$	$(49.81)^{* *}$
Observations	309581	309785	309581	235442	235622	235442
R-squared	0.53	0.37	0.53	0.50	0.32	0.49

Absolute value of t statistics in parentheses

* significant at 5\%; ** significant at 1%

Note: The reference group is, where applicable, black, post-level 1, with an REQV of 13 (the most common value, with three years of tertiary education), and from Limpopo Province

The first three regressions show the whole teaching population (permanent full-time CS educators). The premia in Regression 1 imply that whites employed in the same posts and with the same qualifications as blacks earn 14.9 \% more, Indians 14.2% more and Coloureds 9.8% more. The small provincial differences account for a small part of this differential, with the residual premia $(13.1 \%, 13.8 \%$ and 9.1% for whites, Indian and Coloureds compared to blacks) in Regression 3 then largely reflecting the distribution of experience across the groups. However, more relevant for present purposes are the differences without considering qualifications levels, because a major part of the higher cost in formerly white schools arises from the higher qualification levels of the teachers employed there. Judging only by the race of the teacher and not yet that of the beneficiary children, white teachers in the same post levels earn on average 30.6% more than black teachers, Indian teachers 32.1%, and coloured teachers 13.9% (derived from the coefficients in Regression 2). This therefore confirms that almost 60% of remaining salary differentials between white and black teachers in similar posts derive from the differences in qualifications, and the remainder from differences in experience. These differentials will be used in the subsequent calculations. ${ }^{3}$

This indicates that there are substantial differences between the salaries earned by teachers of the different race groups. Little has changed in this regard, which is not surprising, considering that qualification levels and experience are slow to change. Thus, the estimate of the 30.6% premium that white teachers are earning is very similar to the 27.9% calculated for 1997 in the previous incidence study. It is worth remembering that our Persal figures perhaps exagerrate the gap between white and black salaries, as rferred to earlier.

[^2]However, before one can allocate these costs according to the race of the children, one needs to have information as to the distribution of teachers and children across schools. Using the Annual School Survey data of 2002, the racial composition of the school population for 2002 was as shown in Table 6.

Table 6: Race composition as obtained from ASS2002:

	Number of pupils	Percentage
Black	9550282	82.8%
Coloured	913349	7.9%
Indian	159331	1.4%
White	803227	7.0%
Other/Unknown	101758	0.9%
Total	$\mathbf{1 1 5 2 7 9 4 7}$	$\mathbf{1 0 0 . 0 \%}$

Unfortunately, the former department of many schools was not known, and for some schools the pupil totals were inconsistent. Only a minority of students were in schools for which there was accurate information on former department and on school numbers (age-based and racebased data matching within 10).

Table 7: Race composition and former department as obtained from Annual School Survey 2002

	Blacks	Coloureds	Indians	Whites	Unknown/ Other	Total
DET	2439707	2240	0	435	902	2443284
HOR	88032	286412	259	8	29204	403915
HOD	38754	37	0	0	3078	41869
HOA	202523	18927	240	55285	40069	317044
New Dept	10801	0	5	459	0	11265
Total	2779817	307616	504	56187	73253	3217377
DET	87.8%	0.7%	0.0%	0.8%	1.2%	75.9%
HOR	3.2%	93.1%	51.4%	0.0%	39.9%	12.6%
HOD	1.4%	0.0%	0.0%	0.0%	4.2%	1.3%
HOA	7.3%	6.2%	47.6%	98.4%	54.7%	9.9%
New Dept	0.4%	0.0%	1.0%	0.8%	0.0%	0.4%
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Data on the distribution of teachers was obtained by matching the Persal data to the component numbers linked to schools. Though although only some one-quarter of full-time permanent teachers were retained within the sample (there were many non-matches, and many schools did not provide information on former department), it was still a large enough group to give fairly accurate information..

Table 8: Race composition and former department of teachers as obtained from persal data matched to Annual School Survey 2002

	Black	Coloured	Indian	White	Total
DET	37924	786	40	742	39492
HOR	90	17779	37	322	18228
HOD	6	28	107	47	188
HOA	48	248	6	8034	8336
New	7				7
Total	$\mathbf{3 8} \mathbf{0 7 5}$	$\mathbf{1 8 ~ 8 4 1}$	$\mathbf{1 9 0}$	$\mathbf{9 1 4 5}$	$\mathbf{6 6} \mathbf{2 5 1}$
DET	99.6%	4.2%	21.1%	8.1%	59.6%
HOR	0.2%	94.4%	19.5%	3.5%	27.5%
HOD	0.0%	0.1%	56.3%	0.5%	0.3%
HOA	0.1%	1.3%	3.2%	87.9%	12.6%
New	0.0%	0.0%	0.0%	0.0%	0.0%
Total	$\mathbf{1 0 0 . 0 \%}$				

Data on the racial composition of schools confirm that more than $991 / 2 \%$ of black teachers are in mainly black schools, whereas there are more teachers from the other race groups in black schools. If this is considered, costs per teacher would be slightly higher in black schools because of the more expensive teachers from other race groups, whereas costs in white schools would be little affected by the few black teachers in such schools.

Applying these ratios to the cost differentials per teacher, the costs ratios per teacher in the different former departments would be as follows:

DET 100; House of Representatives (coloured) 113.2; House of Delegates Indians) 126.3; House of Assembly (Whites) 130.2 New schools 99,1

Assuming equal teacher-pupil ratios and ignoring the primary-secondary differential, one finds that the costs per child differ as follows for children of the different race groups:

Coloured 10.8\% higher than blacks, Indians 17.6\% higher, and whites 25.1\% higher.

But the primary teacher pupil-ratios are higher and primary teachers less qualified and therefore less remunerated, whilst the black population has a greater numerical domination at primary schools. This still needs to be considered. Table 9 shows the distribution of children by race and grade.

Table 9: Number of students by grade and race, Annual School Survey 2002

	Black	Coloured	Indian	White	Other/ Unknown	Total
Grade 1	1088349	89624	17492	52394	7617	1255476
Grade 2	824854	79917	12003	49524	6710	973008
Grade 3	783517	64913	8678	50414	5842	913364
Grade 4	874613	84259	12594	53326	6961	1031753
Grade 5	923731	98030	13596	55470	7232	1098059
Grade 6	827356	88920	13590	56615	7175	993656
Grade 7	763148	81232	12917	55915	6864	920076
Grade 8	738568	72151	9853	55215	10479	886266
Grade 9	868402	77156	13356	185762	11464	1156140
Grade 10	680474	60737	14172	53767	10337	819487
Grade 11	556576	41734	13007	52408	8770	672495
Grade 12	354521	30098	10734	48275	7682	451310
Total	$\mathbf{9 2 8 4} \mathbf{1 0 9}$	$\mathbf{8 6 8} \mathbf{7 7 1}$	$\mathbf{1 5 1 9 9 2}$	$\mathbf{7 6 9 ~ 0 8 5}$	$\mathbf{9 7 1 3 3}$	$\mathbf{1 1 1 7 1 \mathbf { 1 7 9 0 }}$
Primary	6085568	586895	90870	373658	48401	7185392
Secondary	3198541	281876	$61 \mathbf{1 2 2}$	395 427	48732	3985698
\% primary	$\mathbf{6 5 . 5 \%}$	$\mathbf{6 7 . 6 \%}$	$\mathbf{5 9 . 8 \%}$	$\mathbf{4 8 . 6 \%}$	$\mathbf{4 9 . 8 \%}$	$\mathbf{6 4 . 3 \%}$

It was found in the previous incidence study that the differential between primary and secondary salaries was about 14%, but did not differ significantly by race. Moreover, if we now also allow for a ratio of 37 teachers per pupils in primary schools, versus 34 in secondary schools, the cost per student would then vary by race as shown in the final column of Table 10 (all ratios relative to black income). The comparison with the 1997 situation (second last column) is particularly interesting.

Table 10: Estimated cost ratios per student, 2000 (2002) versus 1997

	$\mathbf{1 9 9 7}$	$\mathbf{2 0 0 0}$ (2002)	2000 (2002 (using IES primary- secondary ratios)
Blacks	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
Coloureds	120.3	110.5	110.6
Indians	162.9	118.5	120.3
Whites	171.1	128.8	127.8
Others/Unknown	133.6	121.8	

In the case of whites, where the largest differences existed historically, this premium of 28.8\% in the cost per student compared to blacks is much smaller than the estimate that was obtained for 1997, viz. 71.1\%. Clearly, the half a decade since has seen considerable change in the distribution of the cost of education, mainly taking the form of a reduction in the teacher-pupil ratio differentials between former white and former black schools. The remaining differentials are in large part the results of differences in teachers qualifications, differences in teachers experience, and the greater weight of white students in the more expensive part of the school system, high schools.

Thus, we have been able to estimate, with a fair degree of confidence, the reduction in cost differentials that had occurred between children who are members of the different race groups in the period 1997 to 2002. However, salary structures have remained largely unchanged, and post provisioning was already equalised by 2000, so these cost structures can be used for the year 2000 as well.

There is one aspect of the cost differentials which has not yet been dealt with, and that is those amongst the black population. One part of the black population has joined formerly white, Indian or coloured schools, thus obtaining greater benefits from public spending. Also, there are differences within formerly black schools, largely resulting from the fact that it is difficult to attract better qualified teachers to poorer, particularly rural schools.

For the relatively small sample (just over 600) of black teachers for whom we had information in this regard, those located in what were termed urban schools earned on average 9.8% more than similar teachers in rural schools. But the small size of this sample, the likelihood that the sample was non-random (there may have been systematic bias in which schools had
information on their location), and the fact that rural pupils often attend town-based schools, makes this information of dubious value.

An alternative indication is found from regression in Table xxx above, which shows a positive and significant coefficient for Gauteng, the most urban province, when not including the qualification levels of teachers in the model. This implies that Gauteng (black) teachers earn on average $\mathrm{xxx} \%$ more than their counterparts in similar posts in the reference province, Limpopo, which is a poor and relatively rural province. This could be either the result of experience or, more likely, urban teachers being better qualified in terms of REQV. Though some of the other provinces are also urbanised, thus reducing perhaps the magnitude of this coefficient, the reference. This differential between urban and rural can be further used in the modelling of the final incidence analysis.

Conclusion

Despite data deficiencies, the data is clear enough that there has been a continuation of the improved targeting of public school education spending, regarding teacher salaries, largely because of the equalisation of teacher-pupil ratios combined with the already good access of the poor to school education, even in deep rural areas, and the fact that the poor have more children. It is likely that the concentration index for school education would show a further substantial reduction, making it more negative, once this data has been combined with the survey data showing access to education. This is the material that will be used for the final study.

Bibliography

Castro-Leal, Florencia. 1998. Poverty and inequality in the distribution of public education spending in South Africa. South Africa: Poverty and Inequality Informal Discussion Paper Series. Washington, D.C.: World Bank
Castro-Leal, Florencia; Dayton, Julia; Demery, Lionel; and Mehra, Kalpana. 1998. Public social spending in Africa: Do the poor benefit? Processed. Washington, D.C.: World Bank
Demery, Lionel. 2000. Benefit incidence: a practitioner's guide. Poverty and Social Development Group, Africa Region. World Bank: Washington, D.C.
Janisch, Catherine Ann. 1996. An analysis of the burdens and benefits of taxes and government expenditure in the South African economy for the year 1993/94. Unpublished Masters dissertation. Pietermaritzburg: University of Natal
Van der Berg, Servaas. 2000. An analysis of fiscal incidence of social spending in South Africa, 1993-97. Report to the Department of Finance, Pretoria funded by Deutsche Gesellschaft für Technische Zusammenarbeit (German Agency for Technical Cooperation, gtz). Mimeo. Stellenbosch. 17pp.

Yaqub, Shahin. 1999. How equitable is public spending on health and equation? Background paper to World Development Report 2000/1. Poverty Research Unit, Sussex University. September. 23pp. Online: www.worldbank.org/poverty/wdrpoverty/background/yaqub.pdf

APPENDIX 2:

INCIDENCE OF HEALTH SPENDING

Interim report to the National Treasury, 15th November, $2004{ }^{4}$
Ronelle Burger assisted by Kara Mackay
Department of Economics
University of Stellenbosch

This section investigates the incidence of health spending across income, race and space. To answer this question two issues are explored: firstly, whether there are systematic differences across income groups, race and space in the cost of health provision and then secondly, whether there are there systematic differences across income groups, race and space in patterns of utilization ${ }^{5}$.

The focus here is broadly on equity. In the health literature this concept is often understood to refer to equality of opportunity, with access to a doctor arguably representing the most appropriate empirical measure of this. In a recent report on health and inequality Di McIntyre highlights three possible sources of inequity, namely

- funding,
- delivery and
- health status or health outcomes.

Whereas the first two dimensions of inequity clearly relate to health services, the last dimension is considerably broader and is influenced by the accessibility and quality of health services as well as factors outside the scope of health services including the individual's environment, lifestyle choices, occupational safety, health knowledge and genetics. The discussion here concentrates on the first dimension of inequity. The second dimension of equity will be covered briefly at the end of this section of the report. The third dimension of inequity is considered to fall outside the scope of this report.

[^3]
DATA AND METHODOLOGY

The analysis is restricted by the data available. No survey has adequate data on both health services utilization and household income. The General Household Survey (GHS) comes closest, but its lack of comprehensive income information limits the sophistication of the analysis. The available information on salary income does not allow the construction of quintiles due to 40% of households reporting zero salary income. The Income and Expenditure surveys have sufficient information on income to construct quintiles, but unfortunately contain no information on the utilization of health services, only on health expenditure. Due to the provision of free services to the poor the latter is unlikely to provide an adequate representation of the utilization patterns for health services. ${ }^{6}$

Although the health utilization data in the GHS 2003 is superior to that in other surveys, it still has its shortcomings. The survey does for instance not contain any details on the cost of the service or type of service utilized - it just provides information on the place of consultation and the type of health worker who was consulted.,

Also, the data available does not enable tracking changes in health spending and incidence over time. The Health Department's 2000 per hospital expenditure data that is used here to examine systematic differences in hospital costs are not available before that year. There are no surveys that would allow a comparison of how the utilization of public health services has changed from the mid or late nineties. The GHS, which is used for investigating utilization patterns, was only introduced in 2002. The 1993 Project for Statistics on Living Standards and Development data set does not distinguish between private and public clinics and hospitals. The data set provides general information on health outcomes including variables on the prevalence of illness and health worker consultation. It also provides some specific quality and cost measures, but because the survey does not distinguish between public and private health institutions this is of little use for tracking trends pertaining to the questions asked here. The 1995 and 1997 October household surveys have no information on the utilization of health services and the 1999 October household survey will not provide a long enough time

[^4]period for comparison. The 1998 Demographic and Health Survey has detailed information on the utilization of health services, but includes no income or expenditure data.

There are also issues concerning the reliability of data. The deficiencies of the IES 2000 have been well documented including both sampling and data coding problems. The Department of Health's hospital and clinic expenditure data set is still in an experimental/development phase with many seeming discrepancies and irregularities. With a few exceptions, the Department has preferred to leave the expenditure figures in the data base unquestioned and untouched, as reported by the provinces.

The analysis that follows attempts to use the various data sources available in a responsible way - with an awareness of its shortcomings - to provide some indication of who is benefiting from the money the government is spending on health. Despite its limitations, the available data sets can provide adequate answers to most of the questions posed:

- Hospital costs accounts for approximately 60% of the health budget, thus the incidence analysis will concentrate on hospital costs and utilization.
- The Department of Health's National Hospital data base and their per hospital expenditure data can be used to calculate average hospital unit costs for each province.
- Patterns of usage for different population groups, income groups and areas are investigated using both the GHS 2003 and the IES 2000.
- Average subsidies/transfers can be calculated for different groups using the usage patterns and average hospital unit costs
- The GHS 2003 allows a first round assessment of differences in service delivery and service quality across space, race and income groups

1. EQUITY OF HEALTH FUNDING

1. 1 THE COST OF PUBLIC HEALTH SERVICES

Despite hospital utilization being considerably lower than that of clinics, expenditure on hospitals is a multiple of expenditure on clinics. Approximately 60% of the total health budget is spent on hospitals while expenditure on clinics represents just slightly more than 10% of the budget, according to the 2004 Intergovernmental Fiscal Review. The rest of the budget is made up out of minor items - none bigger than 5% - such as health facilities management, health care support and administration costs. This provides the motivation for focusing this analysis of health spending on hospitals.

To avoid the once-off "lumpiness" of capital expenditure, capital expenditure items are removed from hospital cost totals before averages are calculated. According to the 2004 Intergovermental Fiscal Review, current payments account for almost 90% of expenditure. ${ }^{7}$ To investigate the incidence of health funding, an estimate of the average cost of providing hospital services is required. The hospital expenditure entries are matched with the National Hospital data base's utilization statistics for 2000/1 to calculate a unit cost for each hospital over this period. The unit cost measure used is the actual current expenditure ${ }^{8}$ per inpatient day. Outpatient days were not included in the calculation because it was unavailable for a large number of hospitals in the sample.

Alternatively, the actual current expenditure per inpatient visit (thus including length of stay) could be used as the unit, but seeing that hospital utilization by outpatients is less costly and the ratio of inpatient to outpatient visits is approximately 1 to 5 according to Intergovernmental Fiscal Review, an inpatient day is considered to be a sensible middle ground estimate for a hospital unit of utilization.

An average unit cost is calculated for each province, using the total number of inpatients as a weighting factor. Specialised hospitals were excluded from the sample for the calculation of the average. Figure 1 below displays the distribution of hospital current expenditure per inpatient day and Table 1 shows the average unit cost per province.

[^5]FIGURE 1: Distribution of hospital unit cost measure

Source: DoH’s National Hospital data base, Expenditure per hospital data base

TABLE 1: Provincial means for hospital unit cost for a sample of public hospitals - including tertiary hospitals, 2000/1				
Province	Mean	Std. Dev.	Observations	
Eastern Cape	772	402	67	
Free State	1118	723	29	
Gauteng	1132	394	28	
KwaZulu-Natal	886	324	68	
Limpopo	725	235	42	
Mpumalanga	1147	1123	26	
NorthWest	698	220	23	
Northern Cape	425	268	24	
Western Cape	1251	803	37	
Total	960	551	344	
Sorer				

Source: DoH's National Hospital data base, Expenditure per hospital data base

It has been observed that tertiary hospitals have a higher unit cost than other types of hospitals - presumably due to costs associated with the training function and specialization of tertiary
hospitals. For this reason Table 2 shows provincial average unit costs excluding tertiary hospitals.

TABLE 2: Provincial means for hospital unit cost for a sample of public hospitals - excluding tertiary hospitals, 2000/1			
Province		Mean	Std. Dev.
Eastern Cape	772	402	Observations
Free State	893	364	67
Gauteng	953	300	28
KwaZulu-Natal	858	315	23
Limpopo	695	221	66
Mpumalanga	1147	1123	41
NorthWest	698	220	26
Northern Cape	425	268	23
Western Cape	769	620	24
Total	835	471	34

Source: DoH's National Hospital data base, Expenditure per hospital data base

1.2 UTILIZATION OF PUBLIC HEALTH SERVICES

Utilization patterns are examined by population groups, area and income group. The GHS 2003 is used for the analysis. A household expenditure category variable is preferred above salary income as proxy for income. This is motivated by three considerations. Firstly, salary can be a poor proxy for income. Then secondly, the interest here is more in the bottom part of the welfare distribution than the top and as reported earlier the salary variable does not provide any separation for the bottom 40%. Furthermore, it is often argued that expenditure provides a more reliable measure of a household's welfare. The expenditure variable contains eight household expenditure brackets, with the top bracket for a monthly income of R10 000 and above.

It is clear from Table 3 that most of public hospital patients do not have medical aid. According to the GHS 2003 approximately two thirds of medical aid patients who reported
having utilized hospitals over the previous month chose private hospitals. Also, as would be expected, Tables 4 and 5 show that medical aid membership is more prevalent among white households and households with higher expenditure levels.

TABLE 3: Utilization of public hospitals by medical aid membership, 2003

Number
No medical aid 802,545 Proportion

Medical aid
41,167 0.95

	41,167	0.05
Total	$\mathbf{8 4 3 , 7 1 2}$	$\mathbf{1 . 0 0}$

Source: GHS 2003

TABLE 4: Medical aid membership by expenditure category, 2003			
Expenditure category	Mean	Std. Dev.	Observations
R 0 - R 399	0.05	0.21	22600
R 400 - R 799	0.06	0.24	30365
R 800 - R 1 199	0.10	0.30	14887
R 1 200 - R 1 799	0.15	0.36	8756
R 1 800 - R 2 499	0.24	0.43	5929
R 2 500 - R 4 999	0.37	0.48	7580
R 5 000 - R 9 999	0.52	0.50	4283
R10 000 or more	0.63	0.48	1744
Total	0.14	0.35	96144
Soure: GHS 2003			

Source: GHS 2003

TABLE 5: Medical aid membership by population group, 2003			
Population group	Mean	Std. Dev.	Observations
Black	0.08	0.27	77126
Coloured	0.19	0.39	11658
Indian	0.35	0.48	2245
White	0.65	0.48	8192
Total	0.15	0.35	99221

Source: GHS 2003

According to Table 6 the occurrence of illness varies between 0.104 and 0.123 for the different expenditure categories. Reported illness and injury are notably higher for the top expenditure categories. There does not appear to be a steady linear relationship between the occurrence of illness and the expenditure categories, but this could be at least partly due to the inappropriateness of household expenditure - instead of household expenditure per capita - as a measure of household welfare.

Table 7 produces similar conclusions: health worker consultations are higher among the top expenditure categories, but there seems to be no reliable linear relationship between expenditure and the decision to consult a health worker.

TABLE 6: Reported illness and injury by expenditure category, 2003			
Expenditure category	Mean	Std. Dev.	Observations
R 0 - R 399	0.118	0.323	22625
R 400 - R 799	0.104	0.305	30411
R 800 - R 1 199	0.110	0.313	14905
R 1 200 - R 1 799	0.109	0.312	8765
R 1 800 - R 2 499	0.116	0.321	5937
R 2 500 - R 4 999	0.123	0.328	7590
R 5 000 - R 9 999	0.120	0.325	4283
R 10 000 or more	0.127	0.333	1744
Total	0.112	0.315	96260
Soure: GH 2003			

Source: GHS 2003

TABLE 7: Consulted health worker as result of illness and injury by expenditure category, 2003

Expenditure category	Mean	Std. Dev.	Observations
R 0 - R 399	0.808	0.394	2700
R 400 - R 799	0.835	0.371	3349
R 800 - R 1 199	0.839	0.368	1680
R 1 200 - R 1 799	0.849	0.358	997
R 1800 - R 2 499	0.817	0.387	710
R 2 500 - R 4 999	0.843	0.364	908
R 5 000 - R 9 999	0.878	0.328	522
R 10 000 or more	0.899	0.302	214
Total	0.833	0.373	11080

Source: GHS 2003

The progressive fee structure for health services is evident from Table 8: a noticeably smaller proportion of those who report low household expenditure paid for their health worker consultation. However, according to Table 9 those in the bottom expenditure categories are
less likely to have access to doctors and are thus consuming a less costly medical service. Utilization of doctors is far below their expected values for the two lowest expenditure categories. Table 10 shows that only the bottom two expenditure groups consume a greater than proportional share of public health services.

TABLE 8: Payment for health worker consultation, 2003			
Expenditure category	Mean	Std. Dev.	Observations
R 0 - R 399	0.42	0.49	2108
R 400 - R 799	0.48	0.50	2746
R 800 - R 1 199	0.51	0.50	1458
R 1 200 - R 1 799	0.56	0.50	854
R 1 800 - R 2 499	0.59	0.49	620
R 2500 - R 4 999	0.74	0.44	807
R 5 000 - R 9 999	0.86	0.35	444
R 10 000 or more	0.84	0.37	170
Total	0.54	0.50	9207
Sours GH 2003			

Source: GHS 2003

TABLE 9: Cross-tabu by ex	of type of hea re category,	r consulted
Italics represents expected value	Doctor	Total
R 0-R 399	$\begin{aligned} & 445755 \\ & 574476 \end{aligned}$	1007454
R 400-R 799	$\begin{aligned} & 601928 \\ & 688365 \end{aligned}$	1207179
R 800 - R 1199	$\begin{aligned} & 367372 \\ & 365126 \end{aligned}$	640318
R 1200 - R 1799	$\begin{aligned} & 232059 \\ & 205252 \end{aligned}$	359949
R 1800 - R 2499	$\begin{aligned} & 174634 \\ & 149685 \end{aligned}$	262501
R 2500 - R 4999	$\begin{aligned} & 274692 \\ & 203446 \end{aligned}$	356781
R 5000 - R 9999	$\begin{aligned} & 190517 \\ & 133959 \end{aligned}$	234922
R 10000 or more	$\begin{aligned} & 96564 \\ & 63212 \end{aligned}$	110855
Total	2383521	4179959
Pearson chi2 (4): $\operatorname{Pr}=0.000$		

Source: GHS 2003

TABLE 10: Place of consultation by expenditure category, 2003						
Italics represents expected value	Public hospital	Public clinic	Private hospital	Private clinic	Private doctor	Total
R 0 - R 399	197227	515931	20938	17816	235961	1006890
	194919	389096	44313	26742	321767	
R 400 - R 799	262067	556879	37639	17007	301458	1208045
	233860	466829	53166	32085	386049	
R 800 - R 1 199	115340	265278	20323	17391	197612	637282
	123369	246267	28047	16926	203653	
R 1 200 - R 1 799	73771	122023	18038	10557	123403	359949
	69681	139096	15841	9560	115027	
R 1 800 - R 2 499	55190	68494	13939	9790	106007	262205
	50759	101325	11540	6964	83792	
R 2 500 - R 4 999	67009	58498	31470	20589	162379	356407
	68995	137728	15686	9466	113895	
R 5 000 - R 9 999	29580	20569	25223	13290	134886	234922
	45478	90782	10339	6239	75073	
R 10 000 or more	8370	6355	16248	4491	73031	111031
Total	21494	42906	4887	2949	35482	
	808554	1614027	183818	110931	1334737	4176731

Source: GHS 2003

According to Table 11 below there does not appear to be any noteworthy differences in the share of rural and urban residents that chose to consult a health worker when they were ill. Their respective shares of public hospital utilization are also close.

TABLE 11: Health worker consultation when ill by area,			
$\mathbf{2 0 0 3}$			
Area	Mean	Std. Dev.	Observations
Urban	0.839	0.368	6719
Rural	0.832	0.374	4735
Total	0.836	0.370	11454

Source: GHS 2003

TABLE 12: Public Hospital utilization by area, 2003			
Area		Mean	Std. Dev.
Observations			
Urban	0.019	0.14	53534
Rural	0.018	0.13	45894
Total	0.018	0.13	99428

Source: GHS 2003

1.3 SUBSIDISING HEALTH SERVICES

To enable a comparison of health subsidies for different groups an average expenditure per hospital visit is calculated for each group. The average expenditure per visit is estimated by multiplying the proportion of households that paid for their visit to the hospital (from GHS 2003) with the average hospital expenditure for those households that reported expenditure on public hospitals (from IES 2000). ${ }^{9}$ The use of average reported expenditure will mean that systematic differences between groups in the use of hospitals will also be captured by this
${ }^{9}$ Note that the expenditure category in the IES 2000 is defined as "Hospitals, nursing-homes, clinics, etc., including ambulance services". The category thus also includes non-hospital health expenditure.
method. For each individual the average expenditure per hospital visit is then subtracted from the hospital cost per visit for the province where he or she resides to estimate the government transfer or subsidy for each of the individuals who utilized hospital services. An average subsidy for the group is calculated by multiplying the group's average subsidy per visit with the proportion of the group that reported utilizing hospital services during the previous month (GHS 2003).

As expected, the analysis demonstrates that on average those in the bottom expenditure groups pay less for their use of public hospitals. The estimated average subsidy varies between R 533 and R 812 with the six bottom expenditure groups all receiving close to R 800 . Public hospital use is considerably lower for the top two expenditure groups, resulting in a substantially smaller average subsidy for these two groups.

TABLE 13: Average subsidy per expenditure category, 2000
For those who visited public hospital

For whole category	
Proportion	
of group	
who used	
public	Average
hospital	subsidy
0.019	15.09
0.018	14.76
0.018	14.84
0.018	13.46
0.021	16.59
0.019	14.65
0.014	8.57
0.007	3.80
0.018	14.29

Source: DoH's National Hospital data base, Expenditure per hospital data base, GHS 2003, IES 2000
Notes: Ratios for proportion that paid applies to all individuals who consulted health workers due to small cell size when including only those who visited public hospital

Hospital visits are here approximated using health expenditure. A hospital visit is assumed if the household's expenditure on public exceeded zero

2. EQUITY OF SERVICE DELIVERY AND QUALITY

Average satisfaction with health services is lower among the lowest expenditure groups. The values for the satisfaction variable range from 1 to 5 , with 1 representing "very satisfied" and 5 "very dissatisfied". There are noteworthy differences in the approval levels of the four race groups with black levels substantially lower than that of whites. There are however no significant differences in the average satisfaction of rural and urban residents.

Users of public health facilities generally have lower levels of satisfaction than users of private facilities. Public hospital users cited long waiting times (36% of users) and unavailable drugs (8% of users) as problems.

TABLE 14: Average satisfaction with health services by expenditure group, 2003			
Population group	Mean	Std. Dev.	Observations
R 0 - R 399	1.60	1.13	2109
R 400 - R 799	1.65	1.15	2746
R 800 - R 1 199	1.63	1.10	1459
R 1 200 - R 1 799	1.64	1.15	853
R 1 800 - R 2499	1.46	0.96	623
R 2 500 - R 4 999	1.43	1.02	807
R 5 000 - R 9 999	1.35	0.96	444
R 10 000 or more	1.24	0.66	170
Total	1.57	1.10	9211

Source: GHS 2003

* Note that a higher score here indicates greater dissatisfaction

TABLE 15: Average satisfaction with health services by population group, 2003			
Population group	Mean	Std. Dev.	Observations
Black	1.61	1.13	7558
Coloured	1.45	0.94	885
Indian	1.49	1.03	183
White	1.25	0.79	916
Total	1.56	1.09	9542

Source: GHS 2003

* Note that a higher score here indicates greater dissatisfaction

TABLE 16: Average satisfaction with health services by			
area, 2003			
Population group	Mean	Std. Dev.	Observations
Urban	1.559	1.097	5628
Rural	1.564	1.076	3920
Total	1.561	1.089	9548

Source: GHS 2003

The reasons given for not consulting a health worker vary by expenditure category and provide an indication of factors constraining use for the different expenditure groups. In addition to having a higher likelihood of consulting a health worker in case of illness, in most cases when individuals in the top expenditure brackets chose to not consult a health worker it was because the illness did not necessitate it. Table 17 shows that those in the bottom expenditure categories are considerably more likely than those in the top brackets to cite distance to the health facility and prohibitive costs as reasons for not consulting a health worker. In the bottom expenditure group more than a third claimed health costs to be prohibitive, while 14% said that the traveling distance to the facility prevented them from consulting a health worker.

Travel time appears to be an important consideration for rural residents when making decisions about medical care. According to Table 18 the number of rural residents reporting
that they decided to not consult a health worker because the facility was "too far away" is much higher than the that for urban workers. Tables 19 and 20 also show that the average travel time to the closest clinic or hospital was considerably higher for rural residents and that they were also less likely to consult doctors than urban residents.

TABLE 17: Reasons for not consulting health worker during the previous month by expenditure category, 2003

Italics represents expected value	Too expensive	Too far away	Not necessary	Total
R 0 - R 399	78870	29290	96316	204476
	70254	18986	115236	
R 400 - R 799	69199	24645	116450	210294
	72253	19527	118514	
R 800-R 1199	38547	7271	60016	105834
	36363	9827	59644	
R 1200 - R 1799	18303	1920	31239	51462
	17681	4779	29002	
R 1800 - R 2499	17135	1943	30331	49409
	16976	4588	27845	
R 2500 - R 4999	15304	1047	41010	57361
	19708	5326	32327	
R 5000 - R 9999	4733	366	20913	26012
	8937	2415	14660	
R 10000 or more	3907	0	7228	11135
	3826	1034	6275	
Total	245998	66482	403503	715983
Pearson chi2 (4): $\operatorname{Pr}=0.000$				

Source: GHS 2003

TABLE 18: Reasons for not consulting health worker during the previous month by area, 2003				
Italics represents expected value	Too expensive	Too far away	Not necessary	Total
Urban	125372	5941	295604	426917
	144370	38809	243738	
Rural	123124	60859	123929	307912
	104126	27991	175795	
Total	248496	66800	419533	734829
Pearson chi2 (4): Pr $=0.000$				

Source: GHS 2003

TABLE 19: Time to travel to closest hospital or clinic			
by area, 2003			
Population group	Mean		Std. Dev.
Observations			
Urban	17.84	11.47	53421
Rural	33.57	18.57	45716
Total	24.94	17.00	99137

Source: GHS 2003

TABLE 20: Doctors consulted by area, 2003 (Italics represents expected value)		
	Doctor	Total number that consulted health workers
Urban	$\begin{aligned} & 1774598 \\ & 1505925 \end{aligned}$	2605131
Rural	$\begin{array}{r} 749764 \\ 1018437 \end{array}$	1761815
Total	2524362	4366946
Pearson chi2 (9): $\operatorname{Pr}=0.000$		

Source: GHS 2003

CONCLUSION

The analysis shows that public health spending is progressive. Poorer individuals pay lower hospital fees and make more frequent use of public hospitals than those at the top of the expenditure scale, who often prefer to use private hospitals.

Service satisfaction is notably lower for the users of public rather than private health services. The most frequent complaints regarding public hospitals are long waiting times (36% of users) and drugs that are out of stock (9% of users). Dissatisfaction with health services is highest among blacks and those in the lowest expenditure groups.

Access to health facilities also remain an issue: individuals in the bottom expenditure group cite costs (39\%) and travel to the health facility (14\%) as factors that prevent them from seeking help when they are ill. Although there are no significant differences in the proportion of rural and urban residents that consult health workers when they are ill, urban residents are considerably more likely to see doctors.

APPENDIX 3:

HOUSING SUBSIDIES AND FREE BASIC WATER

Andries Mouton, working with Janine Thorne
Development Bank of Southern Africa

Housing subsidy information:

I had a meeting with Lenie Visser (DOH) to discuss detail and to clarify information provided by Dept of Housing DBSA. Information is depicted on a provincial level for individual years from 1994/95 to 2003/2004 and includes the following:

- Expenditure on housing subsidies
- Number of subsidies
- Beneficiaries per income group

Free Basic Water information:

I had a meeting with Wessel Steyn of DWAF which focused on technical detail e.g. cost of providing free water. DWAF says it has not quantified the cost associated with free basic water since it a complicated issue and various factors influence the cost of providing free basic water (see notes)
Only cumulative information up to March 2004 is available: Information is depicted on a provincial level and includes the following:

- Population and estimated number of households served
- Poor population and estimated number of poor households served
- Estimated expenditure n free basic water.

Free Basic Electricity:

I engaged in an exercise to obtain information on free basic electricity by contacting the following institutions and persons:

- National Electricity Regulator: Lesley Ferrando: She informed me that NER currently has no information available and will attempt to gather the information from Local Authorities when the municipalities have to submit annual information to the NER. Submissions are only due in Nov 2004 whereupon the NER will capture the free basic electricity information in a database. From the discussion I had with her, it seems that ESKOM and the Municipalities have to iron out financial problems before the implementation of the programme can start in all earnest. She referred me to ESKOM.
- ESKOM. I had contact with Dannie van der Walt who in turn referred me to Department of Mineral and Energy Affairs. David Mahuna's Office who was responsible for the drafting of the Free Basic Electricity Guideline informed that the specific department is only responsible for the policy issues and that I should contact DPLG for statistical information.
- I contacted DPLG (Patrick Flusk's office) who will return my call, since no one was available to assist me. To date DPLG has not yet responded to my request, but it seems (from hearsay) that many problems still exist with regards to the implementation of free basic electricity and that very little (if any) information is available. I will inform you if DPLG does respond but in the meantime it must be assumed that the required information does not currently exist.

HOUSING

	SUMMARY: PROVINCIAL EXPENDITURE										
Province	$\begin{aligned} & \hline \text { R'000m } \\ & \text { 1994/95 } \end{aligned}$	$\begin{aligned} & \hline \text { R'000m } \\ & \text { 1995/96 } \end{aligned}$	$\begin{aligned} & \hline \text { R'000m } \\ & \text { 1996/97 } \end{aligned}$	$\begin{aligned} & \text { R'000m } \\ & \text { 1997/98 } \end{aligned}$	$\begin{aligned} & \hline \text { R'000m } \\ & \text { 1998/99 } \end{aligned}$	$\begin{gathered} \hline \text { R'000m }^{\text {1999/2000 }} \end{gathered}$	$\begin{array}{\|c\|} \hline R^{\prime} 000 \mathrm{~m} \\ 2000 / 2001 \end{array}$	$\begin{array}{\|c\|} \hline R^{\prime} 000 \mathrm{~m} \\ \hline 2001 / 2002 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline R^{\prime} 000 \mathrm{~m} \\ 2002 / 2003 \end{array}$	R'000m $2003 / 2004$ Up to Dec 2003	R'000m TOTAL April 1994 to Dec 2003
Eastern Cape	60.5	64.3	133.0	274.3	387.1	325.2	471.4	293.2	465.0	456.4	2930.4
Free State	103.2	49.3	202.3	138.2	192.0	204.8	304.3	146.3	191.5	310.7	1842.6
Gauteng	400.4	346.9	567.9	790.8	797.6	796.5	614.2	576.2	1041.3	390.5	6322.3
KwaZulu/Natal	303.4	140.6	335.3	842.7	600.1	461.8	558.4	664.3	748.1	620.0	5274.7
Limpopo	21.7	17.3	111.2	189.8	239.4	202.0	270.2	417.5	408.9	272.2	2150.2
Mpumalanga	69.5	77.6	175.5	168.4	108.3	105.1	171.8	250.5	269.2	221.9	1617.8
Northern Cape	54.9	48.2	53.5	74.7	70.9	62.7	63.8	65.5	68.9	63.3	626.4
North West	37.5	30.1	124.0	263.9	221.4	181.4	261.3	275.4	221.7	80.6	1697.3
Western Cape	284.1	156.7	235.2	392.2	407.7	381.1	324.3	328.1	348.2	155.9	3013.5
Total	1335.2	931.0	1937.9	3135.0	3024.5	2720.6	3039.7	3017.0	3762.8	2571.5	25475.2

Housing Subsidies approved April 1994 to Dec 2003

Province	1994/95	1995/96	1996/97	1997/98	1998/99	1999/2000	2000/2001	2001/2002	2002/2003	$2003 / 2004$ to Dec 03	Total April 94 to Dec 03	2003/2004
Eastern Cape	0	19357	28581	34235	33071	28614	31105	38146	10849	18411	242369	20811
Free State	2048	20439	7210	4017	11600	16818	13564	8799	17510	5081	107086	5681
Gauteng	56691	17051	75462	68527	104446	111623	65877	84907	404432	13926	1002942	39086
KwaZulu/Natal	17111	24065	33845	50339	30664	33806	24384	27801	23437	42829	308281	43397
Limpopo	3193	5450	9794	10929	13625	34727	28805	8115	16506	15764	146908	15764
Mpumalanga	3565	8368	17483	11756	3746	19345	38621	42748	7861	2191	155684	2341
Northern Cape	1797	2707	5275	11322	2880	3990	4010	3109	4161	7003	46254	7452
North West	13381	10429	34987	25429	9579	9054	38962	3107	1790	4247	150965	7570
Western Cape	1737	13444	21332	44737	16350	33060	25577	31857	32952	7743	228789	8143
Total	99523	121310	233969	261291	225961	291037	270905	248589	519498	117195	2389278	150245

Number of beneficiaries: Income bracket R0 to R1500:April 1994 to March 2003

Province	1994/95	1995/96	1996/97	1997/98	1998/99	1999/2000	2000/2001	2001/2002	2002/2003	2003/2004	TOTAL
Eastern Cape	980	1338	18015	35058	21097	18018	25412	44926	7375	na	172219
Free State	1029	10078	12570	7856	12286	18002	7360	9646	10259	na	89086
Gauteng	1335	7836	21882	35219	70388	40212	28968	30933	5329	na	242102
KwaZulu/Natal	24214	20152	44275	19932	25834	12562	16493	2964	4380	na	170806
Limpopo	106	2536	6269	14752	19180	15240	20154	9821	465	na	88523
Mpumalanga	1417	9652	11810	8886	7336	11047	24631	5246	2744	na	82769
Northern Cape	148	841	6744	5745	4423	3683	2981	1547	175	na	26287
North West	1947	8188	13756	9225	10318	19789	15438	13570	2055	na	94286
Western Cape	1323	8757	14547	26502	29306	18935	21677	26243	2268	na	149558
Total	32499	69378	149868	163175	200168	157488	163114	144896	35050	na	1115636

Number of beneficiaries: Income bracket R0 to R1500:April 1994 to

March 2003

Province	$\mathbf{1 9 9 4 / 9 5}$	$\mathbf{1 9 9 5 / 9 6}$	$\mathbf{1 9 9 6 / 9 7}$	$\mathbf{1 9 9 7 / 9 8}$	$\mathbf{1 9 9 8 / 9 9}$	$\mathbf{1 9 9 9} / \mathbf{2 0 0 0}$	$\mathbf{2 0 0 0 / 2 0 0 1}$	$\mathbf{2 0 0 1 / 2 0 0 2}$	$\mathbf{2 0 0 2 / 2 0 0 3}$	$\mathbf{2 0 0 3 / 2 0 0 4}$	TOTAL
Eastern Cape	980	1338	18015	35058	21097	18018	25412	44926	7375	na	$\mathbf{1 7 2} \mathbf{2 1 9}$
Free State	1029	10078	12570	7856	12286	18002	7360	9646	10259	na	$\mathbf{8 9} \mathbf{0 8 6}$
Gauteng	1335	7836	21882	35219	70388	40212	28968	30933	5329	na	$\mathbf{2 4 2} \mathbf{1 0 2}$
KwaZulu/Natal	24214	20152	44275	19932	25834	12562	16493	2964	4380	na	$\mathbf{1 7 0 ~ 8 0 6}$
Limpopo	106	2536	6269	14752	19180	15240	20154	9821	465	na	$\mathbf{8 8 5 2 3}$

Mpumalanga	1417	9652	11810	8886	7336	11047	24631	5246	2744	na	82769
Northern Cape	148	841	6744	5745	4423	3683	2981	1547	175	na	26287
North West	1947	8188	13756	9225	10318	19789	15438	13570	2055	na	94286
Western Cape	1323	8757	14547	26502	29306	18935	21677	26243	2268	na	149558
Total	32499	69378	149868	163175	200168	157488	163114	144896	35050	na	1115636

Number of beneficiaries: Income bracket R1501 to R2500: April 1994 to March 2003

Province	1994/95	1995/96	1996/97	1997/98	1998/99	1999/2000	2000/2001	2001/2002	2002/2003	2003/2004	TOTAL
Eastern Cape	167	726	540	703	535	838	775	1024	121	na	5429
Free State	166	527	331	501	244	92	34	132	3	na	2030
Gauteng	964	3980	2699	3048	8400	4313	2843	2528	564	na	29339
KwaZulu/Natal	4595	786	1724	501	506	286	284	96	33	na	8811
Limpopo	2	24	50	390	606	269	145	36	0	na	1522
Mpumalanga	105	456	465	283	203	144	273	92	18	na	2039
Northern Cape	0	82	213	169	214	164	132	58	4	na	1036
North West	73	565	1282	936	671	1003	809	373	31	na	5743
Western Cape	183	1314	1884	1370	1652	1215	1451	618	49	na	9736
Total	6255	8460	9188	7901	13031	8324	6746	4957	823	na	65685

Number of beneficiaries: Income bracket R2501 to R3500: April 1994 to March 2003

Province	1994/95	1995/96	1996/97	1997/98	1998/99	1999/2000	2000/2001	2001/2002	2002/2003	2003/2004	TOTAL
Eastern Cape	53	349	598	572	389	510	547	618	91	na	3727
Free State	24	114	58	141	66	40	15	72	0	na	530
Gauteng	344	1389	1566	2225	3393	1909	1901	1262	246	na	14235
KwaZulu/Natal	2218	412	714	221	230	93	393	58	59	na	4398
Limpopo	2	20	8	73	153	64	27	8	1	na	356
Mpumalanga	12	78	149	58	48	43	59	103	24	na	574
Northern Cape	0	19	47	26	65	59	40	10	0	na	266

North West	18	190	436	194	122	241	144	142	29	na	1516
Western Cape	111	884	905	754	740	570	873	373	36	na	5246
Total	2782	3455	4481	4264	5206	3529	3999	2646	486	na	30848

Number of beneficiaries: Income bracket R3501 and more: April 1994 to March 2003

Province	$\mathbf{1 9 9 4} / \mathbf{9 5}$	$\mathbf{1 9 9 5} / \mathbf{9 6}$	$\mathbf{1 9 9 6} / \mathbf{9 7}$	$\mathbf{1 9 9 7} / \mathbf{9 8}$	$\mathbf{1 9 9 8} / \mathbf{9 9}$	$\mathbf{1 9 9 9} / \mathbf{2 0 0 0}$	$\mathbf{2 0 0 0 / 2 0 0 1}$	$\mathbf{2 0 0 1 / 2 0 0 2}$	$\mathbf{2 0 0 2 / 2 0 0 3}$	$\mathbf{2 0 0 3 / 2 0 0 4}$	TOTAL
Eastern Cape	0	0	0	0	0	0	1	3	1	na	$\mathbf{5}$
Free State	0	0	0	0	0	0	0	0	0	na	$\mathbf{0}$
Gauteng	0	0	0	0	0	2	2	24	1	na	$\mathbf{2 9}$
KwaZulu/Natal	0	0	0	2	1	6	0	0	5	na	$\mathbf{1 4}$
Limpopo	0	0	0	0	0	0	0	2	0	na	$\mathbf{2}$
Mpumalanga	0	0	0	0	0	0	0	0	0	na	$\mathbf{0}$
Northern Cape	0	0	0	0	0	0	1	2	0	na	$\mathbf{3}$
North West	0	0	0	0	0	0	1	15	5	na	$\mathbf{2 1}$
Western Cape	2	0	2	0	0	0	0	0	0	na	$\mathbf{4}$
Total	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{4 6}$	$\mathbf{1 2}$	na	$\mathbf{7 8}$

Number of beneficiaries: Income bracket: ALL: April 1994 to March 2003

Province	1994/95	1995/96	1996/97	1997/98	1998/99	1999/2000	2000/2001	2001/2002	2002/2003	2003/2004	TOTAL
Eastern Cape	1200	2413	19153	36333	22021	19366	26735	46571	7588	na	181380
Free State	1219	10719	12959	8498	12596	18134	7409	9850	10262	na	91646
Gauteng	2643	13205	26147	40492	82181	46436	33714	34747	6140	na	285705
KwaZulu/Natal	31027	21350	46713	20656	26571	12947	17170	3118	4477	na	184029
Limpopo	110	2580	6327	15215	19939	15573	20326	9867	466	na	90403

Mpumalanga	1534	10186	12424	9227	7587	11234	24963	5441	2786	na	85382
Northern Cape	148	942	7004	5940	4702	3906	3154	1617	179	na	27592
North West	2038	8943	15474	10355	11111	21033	16392	14100	2120	na	101566
Western Cape	1619	10955	17338	28626	31698	20720	24001	27234	2353	na	164544
Total	41538	81293	163539	175342	218406	169349	173864	152545	36371	na	1212247

Number of households:

Province	1994/95	1995/96	1996/97	1997/98	1998/99	1999/2000	2000/2001	2001/2002	2002/2003	2003/2004
Eastern Cape	1258609	1295690	1333862	1372034	1411299	1451688	1493232	1535966	1579922	1625136
Free State	578807	602104	626339	650574	675747	701893	729052	757261	786561	816996
Gauteng	1680320	1818294	1967597	2116900	2277533	2450354	2636290	2836334	3051558	3283113
KwaZulu/Natal	1479886	1569857	1665299	1760741	1861652	1968347	2081157	2200432	2326544	2459882
Limpopo	890378	936236	984457	1032678	1083260	1136321	1191980	1250365	1311611	1375856
Mpumalanga	542786	573101	605110	637119	670820	706305	743666	783004	824422	868032
Northern Cape	175650	181525	187596	193667	199935	206405	213085	219981	227101	234450
North West	634037	676428	721652	766876	814935	866005	920276	977948	1039234	1104361
Western Cape	904965	944369	985490	1026611	1069447	1114071	1160556	1208982	1259428	1311979
Total	8145438	8597604	9077402	9557200	10064628	10601389	11169294	11770273	12406380	13079805

Beneficiaries as \% of total households: Income bracket R0 to R1500

Province	$\mathbf{1 9 9 4 / 9 5}$	$\mathbf{1 9 9 5} / \mathbf{9 6}$	$\mathbf{1 9 9 6} / \mathbf{9 7}$	$\mathbf{1 9 9 7 / 9 8}$	$\mathbf{1 9 9 8} / \mathbf{9 9}$	$\mathbf{1 9 9 9 / 2 0 0 0}$	$\mathbf{2 0 0 0 / 2 0 0 1}$	$\mathbf{2 0 0 1 / 2 0 0 2}$	$\mathbf{2 0 0 2 / 2 0 0 3}$	$\mathbf{2 0 0 3 / 2 0 0 4}$
Eastern Cape	0.08	0.10	1.35	2.56	1.49	1.24	1.70	2.92	0.47	nc
Free State	0.18	1.67	2.01	1.21	1.82	2.56	1.01	1.27	1.30	nc
Gauteng	0.08	0.43	1.11	1.66	3.09	1.64	1.10	1.09	0.17	nc
KwaZulu/Natal	1.64	1.28	2.66	1.13	1.39	0.64	0.79	0.13	0.19	nc
Limpopo	0.01	0.27	0.64	1.43	1.77	1.34	1.69	0.79	0.04	nc
Mpumalanga	0.26	1.68	1.95	1.39	1.09	1.56	3.31	0.67	0.33	nc
Northern Cape	0.08	0.46	3.59	2.97	2.21	1.78	1.40	0.70	0.08	nc
North West	0.31	1.21	1.91	1.20	1.27	2.29	1.68	1.39	0.20	nc
Western Cape	0.15	0.93	1.48	2.58	2.74	1.70	1.87	2.17	0.18	nc

Beneficiaries as \% of total households: Income bracket R1501 to R2500

Province	$\mathbf{1 9 9 4 / 9 5}$	$\mathbf{1 9 9 5 / 9 6}$	$\mathbf{1 9 9 6} / \mathbf{9 7}$	$\mathbf{1 9 9 7 / 9 8}$	$\mathbf{1 9 9 8} / \mathbf{9 9}$	$\mathbf{1 9 9 9 / 2 0 0 0}$	$\mathbf{2 0 0 0} / \mathbf{2 0 0 1}$	$\mathbf{2 0 0 1 / 2 0 0 2}$	$\mathbf{2 0 0 2} / \mathbf{2 0 0 3}$	$\mathbf{2 0 0 3 / 2 0 0 4}$
Eastern Cape	0.01	0.06	0.04	0.05	0.04	0.06	0.05	0.07	0.01	nc
Free State	0.03	0.09	0.05	0.08	0.04	0.01	0.00	0.02	0.00	nc
Gauteng	0.06	0.22	0.14	0.14	0.37	0.18	0.11	0.09	0.02	nc
KwaZulu/Natal	0.31	0.05	0.10	0.03	0.03	0.01	0.01	0.00	0.00	nc
Limpopo	0.00	0.00	0.01	0.04	0.06	0.02	0.01	0.00	0.00	nc
Mpumalanga	0.02	0.08	0.08	0.04	0.03	0.02	0.04	0.01	0.00	nc
Northern Cape	0.00	0.05	0.11	0.09	0.11	0.08	0.06	0.03	0.00	nc
North West	0.01	0.08	0.18	0.12	0.08	0.12	0.09	0.04	0.00	nc
Western Cape	0.02	0.14	0.19	0.13	0.15	0.11	0.13	0.05	0.00	nc
Total	$\mathbf{0 . 0 8}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 1 3}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 1}$	nc

Beneficiaries in income bracket R1500 to R2500 as percentage of households; 1994/95 to 2002/03

Beneficiaries as \% of total households: Income bracket R2501 to R3500

Province	$\mathbf{1 9 9 4 / 9 5}$	$\mathbf{1 9 9 5 / 9 6}$	$\mathbf{1 9 9 6} / \mathbf{9 7}$	$\mathbf{1 9 9 7 / 9 8}$	$\mathbf{1 9 9 8} / \mathbf{9 9}$	$\mathbf{1 9 9 9 / 2 0 0 0}$	$\mathbf{2 0 0 0} / \mathbf{2 0 0 1}$	$\mathbf{2 0 0 1 / 2 0 0 2}$	$\mathbf{2 0 0 2} / \mathbf{2 0 0 3}$	$\mathbf{2 0 0 3 / 2 0 0 4}$
Eastern Cape	0.004	0.027	0.045	0.042	0.028	0.035	0.037	0.040	0.006	nc
Free State	0.004	0.019	0.009	0.022	0.010	0.006	0.002	0.010	0.000	nc
Gauteng	0.020	0.076	0.080	0.105	0.149	0.078	0.072	0.044	0.008	nc
KwaZulu/Natal	0.150	0.026	0.043	0.013	0.012	0.005	0.019	0.003	0.003	nc
Limpopo	0.000	0.002	0.001	0.007	0.014	0.006	0.002	0.001	0.000	nc
Mpumalanga	0.002	0.014	0.025	0.009	0.007	0.006	0.008	0.013	0.003	nc
Northern Cape	0.000	0.010	0.025	0.013	0.033	0.029	0.019	0.005	0.000	nc
North West	0.003	0.028	0.060	0.025	0.015	0.028	0.016	0.015	0.003	nc
Western Cape	0.012	0.094	0.092	0.073	0.069	0.051	0.075	0.031	0.003	nc
Total	$\mathbf{0 . 0 3 4}$	$\mathbf{0 . 0 4 0}$	$\mathbf{0 . 0 4 9}$	$\mathbf{0 . 0 4 5}$	$\mathbf{0 . 0 5 2}$	$\mathbf{0 . 0 3 3}$	$\mathbf{0 . 0 3 6}$	$\mathbf{0 . 0 2 2}$	$\mathbf{0 . 0 0 4}$	nc

Beneficiaries as \% of total households: Income bracket R3501 and more

Province	$\mathbf{1 9 9 4 / 9 5}$	$\mathbf{1 9 9 5 / 9 6}$	$\mathbf{1 9 9 6} / \mathbf{9 7}$	$\mathbf{1 9 9 7 / 9 8}$	$\mathbf{1 9 9 8} / \mathbf{9 9}$	$\mathbf{1 9 9 9 / 2 0 0 0}$	$\mathbf{2 0 0 0 / 2 0 0 1}$	$\mathbf{2 0 0 1 / 2 0 0 2}$	$\mathbf{2 0 0 2 / 2 0 0 3}$	$\mathbf{2 0 0 3 / 2 0 0 4}$
Eastern Cape	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0001	nc
Free State	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	nc
Gauteng	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0008	0.0000	nc
KwaZulu/Natal	0.0000	0.0000	0.0000	0.0001	0.0001	0.0003	0.0000	0.0000	0.0002	nc
Limpopo	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000	nc
Mpumalanga	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	nc
Northern Cape	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0009	0.0000	nc
North West	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0015	0.0005	nc
Western Cape	0.0002	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	nc
Total	$\mathbf{0 . 0 0 0 0}$	$\mathbf{0 . 0 0 0 1}$	$\mathbf{0 . 0 0 0 0}$	$\mathbf{0 . 0 0 0 4}$	$\mathbf{0 . 0 0 0 1}$	nc				

Beneficiaries as \% of total households: Income bracket: ALL

Province	$\mathbf{1 9 9 4} / \mathbf{9 5}$	$\mathbf{1 9 9 5} / \mathbf{9 6}$	$\mathbf{1 9 9 6} / \mathbf{9 7}$	$\mathbf{1 9 9 7 / 9 8}$	$\mathbf{1 9 9 8 / 9 9}$	$\mathbf{1 9 9 9} / \mathbf{2 0 0 0}$	$\mathbf{2 0 0 0 / 2 0 0 1}$	$\mathbf{2 0 0 1 / 2 0 0 2}$	$\mathbf{2 0 0 2 / 2 0 0 3}$	$\mathbf{2 0 0 3 / 2 0 0 4}$
Eastern Cape	0.10	0.19	1.44	2.65	1.56	1.33	1.79	3.03	0.48	nc
Free State	0.21	1.78	2.07	1.31	1.86	2.58	1.02	1.30	1.30	nc
Gauteng	0.16	0.73	1.33	1.91	3.61	1.90	1.28	1.23	0.20	nc
KwaZulu/Natal	2.10	1.36	2.81	1.17	1.43	0.66	0.83	0.14	0.19	nc
Limpopo	0.01	0.28	0.64	1.47	1.84	1.37	1.71	0.79	0.04	nc
Mpumalanga	0.28	1.78	2.05	1.45	1.13	1.59	3.36	0.69	0.34	nc
Northern Cape	0.08	0.52	3.73	3.07	2.35	1.89	1.48	0.74	0.08	nc
North West	0.32	1.32	2.14	1.35	1.36	2.43	1.78	1.44	0.20	nc
Western Cape	0.18	1.16	1.76	2.79	2.96	1.86	2.07	2.25	0.19	nc
Total	$\mathbf{0 . 5 1}$	$\mathbf{0 . 9 5}$	$\mathbf{1 . 8 0}$	$\mathbf{1 . 8 3}$	$\mathbf{2 . 1 7}$	$\mathbf{1 . 6 0}$	$\mathbf{1 . 5 6}$	$\mathbf{1 . 3 0}$	$\mathbf{0 . 2 9}$	nc

Notes:

Expenditure information covered the period April 1994 to December 2003
The number of subsidies covered the period April 1994 to December 2003.
The number of beneficiaries covered the period April 1994 to March 2003
The number of households for 1996 and 2001 were sources from STATS SA 1996 and 2001 Population Census Community profile databases. The number of households for other years were estimted by using the average annual growth rate between 1996 and 2001.
na: not available
nc: not calculable

Source:

National Department of Housing: 2004. Operational Information. Pretoria

FREE BASIC WATER:

	Total population 2004	Population served 2004	\% population served	Total households 2004 estimate	Total households served 2004 estimate	$\%$ households served	Total population 2001	Total households 2001	Household size 2001
Eastern									
Cape	7353937	2828680	38.5	1754829	674992	38.5	6436760	1535968	4.2
Free State	2934118	2845595	97.0	820860	796095	97.0	2706779	757259	3.57
Gauteng	8362716	8007114	95.7	2684055	2569923	95.7	8837175	2836335	3.12
KwaZulu-									
Natal	9503017	5820107	61.2	2218405	1358658	61.2	9426017	2200430	4.28
Limpopo	6057659	2726238	45.0	1436251	646382	45.0	5273641	1250363	4.22
Mpumalanga	3286858	1441094	43.8	824088	361314	43.8	3122995	783004	3.99
Northern									
Cape	901405	594682	66.0	241018	159006	66.0	822726	219981	3.74
North West	3751150	2362338	63.0	999751	629607	63.0	3669347	977949	3.75
Western									
Cape	4402436	3918376	89.0	1176408	1047058	89.0	4524338	1208982	3.74
Total SA	46553296	30544224	65.6	12225516	8021320	65.6	44819778	11770271	3.81

Percentage of households served by Free Basic Water: March 2004 (estimate)

Notes:

Total population for 2004 was estimated from Census 96 information and STATS SA growth factor for 2003 (DWAF estimate).
Total number of households 2004, total number of households served 2004 were etimated by using 2001 Census information on household size.

Source:

Total population 2004, population served 2004, \% population served information were obtained from DWAF Website:
http:///www.dwaf.goz.za/FreeBasicWater

Free Basic Water: Poor population

 and number of poor households served: July 2001 to March 2004| Province | Total poor population 2004 | Poor
 population
 served
 2004 | \% poor population served 2004 | Total poor households 2004 estimate | Total poor households served 2004 estimate | \% Poor
 households
 served | Total population 2001 | Total households 2001 | Household size 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eastern | | | | | | | | | |
| Cape | 5481547 | 2216093 | 40.4 | 1308031 | 528814 | 40.4 | 6436760 | 1535968 | 4.2 |
| Free State | 1951829 | 1801350 | 92.3 | 546051 | 503953 | 92.3 | 2706779 | 757259 | 3.57 |
| Gauteng | 4055972 | 3532076 | 87.1 | 1301784 | 1133637 | 87.1 | 8837175 | 2836335 | 3.12 |
| KwaZulu- | | | | | | | | | |
| Natal | 6297337 | 3597503 | 57.1 | 1470064 | 839809 | 57.1 | 9426017 | 2200430 | 4.28 |
| Limpopo | 4731809 | 708166 | 15.0 | 1121896 | 167904 | 15.0 | 5273641 | 1250363 | 4.22 |
| Mpumalanga | 2257622 | 295083 | 13.1 | 566036 | 73984 | 13.1 | 3122995 | 783004 | 3.99 |
| Northern | | | | | | | | | |
| Cape | 524831 | 402316 | 76.7 | 140330 | 107572 | 76.7 | 822726 | 219981 | 3.74 |
| North West | 2406752 | 1130691 | 47.0 | 641444 | 301350 | 47.0 | 3669347 | 977949 | 3.75 |
| Western | | | | | | | | | |
| Cape | 1671093 | 1429131 | 85.5 | 446545 | 381889 | 85.5 | 4524338 | 1208982 | 3.74 |

Notes:

Poor population for 2004 was estimated from Census 96 information and STATS SA growth factor for 2003 and referred to the population with an income less than R1000 per month (DWAF estimate).

Total number of poor number of households 2004, total poor households served were etimated by using 2001 Census information on household size.

Expenditure on free basic water:
July 2001 to March 2004
(estimate)

Province	Total	6 kl	Cost	Expenditure

	households served 2004 estimate	water per month free	$\begin{gathered} \text { (Cent } \\ \text { per } k l \text {) } \end{gathered}$	per month (March 2004) (Rands)
Eastern Cape	674992	6	2.79	11299367
Free State	796095	6	2.79	13326625
Gauteng	2569923	6	2.79	43020508
KwaZulu-				
Natal	1358658	6	2.79	22743943
Limpopo	646382	6	2.79	10820436
Mpumalanga	361314	6	2.79	6048399
Northern				
Cape	159006	6	2.79	2661768
North West	629607	6	2.79	10539619
Western				
Cape	1047058	6	2.79	17527757
Total	8021320	6	2.79	134276901

Notes:

Total households served were estimated by using the Census 2001 household size. These figures represent cumulative totals from implementation (July 2001) to March 2004.

Each municipality determines its own amount of free basic water per month. For purposes of this exercise 6 kl per month is used as a norm.

Cost:

Because the cost of providing water may differ substantially a general cost of R 2.79 c per kl is used (As obtained from the water services model) for purposes of this exercise. Factors influencing cost include the following:
a. In some instance flat rates are used.
b. cost varies depending on the source of water
c. Cost varies depending on the location of the water source
d. Cross subsidisation of services may occur

Expenditure:

Only cumulative figures are available: Information in this column thus depicts estimated expenditure for the month of March 2004.

APPENDIX 4:

TERTIARY EDUCATION

Pierre de Villiers
University of Stellenbosch

Fiscal incidence of expenditure on tertiary education. A comparison between 1995 \& 2000

Pierre de Villiers ${ }^{10}$

Introduction

In this analysis the tertiary expenditure on technikons and universities are compared for 1995 and 2000. The technical colleges are not discussed here because it became an expenditure item of the provinces after 1994 and not enough data could be obtained to make it a worthwhile exercise to do for these institutions. In 1994 there were 65477 full-time equivalent students at technical colleges (Race Relation Survey 1995/96). In comparison with the 280774 full-time equivalent students at universities and 127527 at technikons it is clear that the number of students at technical colleges are fairly small in comparison with the other two types of institutions. Financial data for technical colleges could not be obtained for the period 1994-2000. According to the Budget Expenditure Review 2001, R7 114112000 were allocated to tertiary education with R6 204358000 earmarked for universities and technikons. This left R909 764000 that could be spend on technical colleges. However, the technical notes are not clear enough to make conclusive conclusions. Due to these uncertainties and the relatively small size of technical colleges they were excluded from this analysis.

Method of analysis

The analysis was done with headcounts of students as well as full-time equivalent student numbers. There is not much difference between the two methods because full-time equivalent numbers are just a constant fraction of headcounts of student numbers. The difference is students that are not enrolled for full courses and are therefore not counted as full-time students when subsidies are determined. The number of enrolled students at both technikons and universities were obtained from the relevant Race Relations Surveys. These student numbers are available per race per

[^6]institution. The funds spent on tertiary education were obtained from the Budget of 1995 and the Budget Expenditure Review for 2000.

Two methods of analysis are done. In the first instance it is assumed that all students receive the same subsidy and with the second method a distinction is made between students in the human sciences and those studying in the natural sciences. The results of these two methods are discussed separately and the most important reasons for different subsidies for different racial groups will be highlighted.

Subsidies spent proportionally

With the first method it was assumed that the funds were spent proportionally to the number of students at each institution. It was thus assumed that the subsidy for each student at an institution was the same and that no distinction was made according to race or course followed. The conversion to full time equivalent numbers (FE) was done from the Information on the State Budget for Higher Education. The subsidies calculated per student will differ in size between these two methods, although the relative difference will be the same. The reason is because the only difference between the two methods is that you divide with a smaller number of students with the FE-method. The relative difference between subsidies per student with headcount of students and FE student numbers will differ from institution to institution, but the relative difference between racial groups stays the same with this method. With this method the most equal possible distribution of education subsidies between racial groups are discussed.

Table 1

Expenditure on Technikon education: 1995

	Blacks	Coloureds	Indian	Whites
Enrollment \%	48.0	7.7	5.7	38.5
Expenditure \%	49.0	8.2	5.7	37.1
Per capita expenditure: Headcount	R5 402	R5 621	R5 260	R5 092
Per capita expenditure: Full-time	R7 978	R8 598	R8 402	R7 574

In Table 1 the enrollment percentage of each racial group to the total number of students at all the technikons are given as well as the percentage of total expenditure allocated to each group. The table also includes the per capita expenditure per headcount and per full- time equivalent student.

Somewhat surprisingly there was not much difference between the different racial groups. The relatively high expenditure on blacks can be explained by the high subsidies paid to Border Technikon (more than double the subsidy per student than at any other technikon) where basically all students was black. Transkei and Setlogelo Technikons also received high subsidies per student and were exclusively black. The cheapest technikon (measured in subsidy per student) was Technikon South Africa with a per student subsidy of less than 30% of the second lowest subsidy per technikon student. The difference between the highest (coloured) and lowest (white) subsidy per student was less than 10%, and almost negligible.

Table 2

Expenditure on technikon education: 2000

	Blacks	Coloureds	Indian	Whites
Enrollment \%	73.1	6.2	3.9	16.7
Expenditure \%	73.3	6.6	4.6	15.5
Per capita expenditure: Headcount	R9 035	R9 548	R10 560	R8 324
[In 1995 prices]	$[R 6541]$	[R6 913]	[R7645]	[R6 027]
Per capita expenditure: Full-time	R12 611	R13 223	R13 657	R12 071
[In 1995 prices]	$[R 9 ~ 130]$	[R9 573]	[R9 888]	[R8 739]

How did the picture changed from 1995 to 2000? The number of black students at technikons increased by almost 60% and by far the majority of students were black by 2000 (see Table 2). Expenditure per student is also given in 1995 prices so that it can easily be compared with the 1995values. The highest subsidy per student was paid to ML Sultan Technikon where about one third of all Indian students were attending the institution. This partly explains the high subsidy per Indian student. The low subsidy of white students can be explained by the fact that about one third of total white students attended Technikon South Africa which received the lowest subsidy per student. Here the difference between the lowest subsidy (white) and highest subsidy (Indian) is quite substantial with more than a 20% difference.

For both 1995 and 2000 whites received the lowest subsidy per student, coloureds received the highest subsidy in 1995 while Indians received the highest subsidy in 2000. The difference between the subsidies paid to the different groups widened over the years if we calculate it using the abovementioned method.

Table 3
Expenditure on university education: 1995

	Africans	Coloureds	Indian	Whites
Enrollment \%	50.8	5.0	6.9	37.3
Expenditure \%	46.7	5.3	7.1	40.9
Per capita expenditure: Headcount	R7 318	R8 385	R8 223	R8 732
Per capita expenditure: Full-time	R9 844	R11 204	R11 329	R12 364

Exactly the same procedure was followed with universities for the two years under discussion. Here the gap between the different groups in 1995 was not that big, although there was more than a 16% difference between white and black subsidies per student (see Table 3). The gap would be even wider, but the highest subsidy per FE student was paid to Medunsa (R27 200), North West (R25 959) and Transkei (R17 696) that was almost exclusively black. Unisa received the lowest subsidy per student (R4 399) and with almost one third of all white students enrolled at Unisa decreased the white subsidy per student quite substantially. These two factors brought the two figures closer than would otherwise be the case.

Table 4

Expenditure on university education: 2000

	Africans	Coloureds	Indian	Whites
Enrollment \%	53.3	4.8	8.2	33.7
Expenditure \%	54.9	4.8	8.0	32.3
Per capita expenditure: Headcount [In 1995 prices]	$\begin{aligned} & \hline \text { R12 } 640 \\ & \text { [R9 151] } \end{aligned}$	$\begin{aligned} & \text { R12 } 330 \\ & {[R 8927]} \end{aligned}$	$\begin{aligned} & \hline \text { R11 935 } \\ & {[R 8641]} \end{aligned}$	$\begin{aligned} & \text { R11 } 785 \\ & {[R 8 \text { 532] }} \end{aligned}$
Per capita expenditure: Full-time [In 1995 prices]	R17 677 [R12 798]	$\begin{aligned} & \text { R17 } 516 \\ & \text { [R12 682] } \end{aligned}$	$\begin{aligned} & \hline \text { R17 } 422 \\ & \text { [R12 614] } \end{aligned}$	$\begin{aligned} & \text { R17 } 261 \\ & \text { [R12 470] } \end{aligned}$

From 1995 to 2000 the situation changed quite dramatically. Although the number of black students increased by only 2.5 percentage points of the total number of students this group received 8.2 percentage points more of the total funds channeled to universities (see Table 4). This resulted in the subsidy per student that was much more evenly spread between the different groups in 2000 than in 1995. There is only about 7% difference between the highest and the lowest subsidy per student. The figure for blacks is artificially high due to high subsidies paid per FE student at

Medunsa (R52 963 - due to mainly natural sciences being presented there) and Transkei 423). However, their figure is lowered by the lowest subsidy per student (excluding Unisa) being paid to Port Elizabeth (R15 601) where almost 9\% of all black students were studying. The difference between the different racial groups by 2000 was negligible small.

Distinction between students in natural and human sciences

With the next method a distinction was made between students doing courses in human sciences and those following courses in natural sciences to see how that influenced the subsidy per student. With this method the number of students, according to race, that received degrees, diplomas or certificates at universities and technikons in 1998 and 2000 in human and natural sciences were taken from the Race Relations Surveys 2001/02 (page 268) and 2002/03 (page 274). The difference between the number of awards between the two fields of study did not change much over this period and the average of the two years was used as a proxy for students taking courses in the natural and human sciences. It was further assumed that the ratio between the number of students in the human sciences relatively to those in the natural sciences did not change between 1995 and 2000. It was also assumed that the ratio of the number of students of each racial group following human sciences relatively to natural sciences at a specific institution was equal to the national ratio. The subsidy paid to students in the natural sciences was 2.55 times more than for those in human sciences in 2003. This ratio did not change much since the introduction of the Sapse formula and it was assumed that subsidy per student was distributed in this ratio for both 1995 and 2000.

Table 5

Expenditure on technikon education with distinction between human and natural sciences: 1995

	Blacks	Coloureds	Indian	Whites
Enrollment \%	48.0	7.7	5.7	38.5
Expenditure \%	47.0	8.7	6.3	38.1
Per capita expenditure: Headcount	R5 179	R5 934	R5 816	R5 224
Per capita expenditure: Full-time	R7 648	R9 077	R9 290	R7 771

The subsidy per student for 1995 between the different racial groups was remarkably of the same magnitude. However, the figures for blacks may give the wrong impression. They represented 48\% of the total number of students at technikons, but although this represented 51.1% of students in human sciences they were only 37.6% of students in natural sciences. The Border Technikon
received the most funds per FE student (R21 068) and Setlogelo (9 739) and Transkei (R11 417) also received much more per student. Students at all three these institutions were almost exclusively black. The other technikons received between R6 300 and R8 700 per student. The one exception was Technikon South Africa that received only R2 419 per student. Seeing that approximately 47\% black technikon students attended this institution, this decreased the amount payable per black student quite substantially.

The picture changed quite dramatically in 2000 (see Table 6). The gap between the highest (Indians) and the lowest (whites) subsidy per student widened to almost 30%. The number of students following courses in the natural sciences can explain the relatively high subsidy per Indian student. Although they were only 4.3% of the total number of students they represented 7.4% of students studying in the natural sciences. The same applies to coloured students. They were 6.2% of the students, but 8.8% of students in the natural sciences. The number of students taking courses in human sciences can explain the low subsidy per black student. They were 73.3% of technikon students, but represented only 63.3% of students in the natural sciences. This figure was further lowered by the low subsidies per FE student paid to Technikon South Africa (R4 905) as well as Pretoria (R8 739). Almost 47\% of black students were enrolled at these two institutions. However, their figure was increased by the highest FE student subsidies being paid to Border (R12 995), Mangosuthu (R13 598) and Witwatersrand (R13 026) Technikons. No other technikon received more than R12 400 per FE student. White students were 16.2% of the total number of students, but represented 20.2% of students in the natural sciences. This should lead to a high subsidy per student, but the low subsidy paid to Technikon South Africa (R4 905) and Pretoria (R8 739) lowered their figure substantially. Almost 54% of white students were enrolled at these two institutions.

Table 6

Expenditure on technikon education with distinction between human and natural sciences: 2000

	Blacks	Coloureds	Indian	Whites
Enrollment \%	73.3	6.3	4.3	16.2
Expenditure \%	71.4	7.1	5.3	16.2
Per capita expenditure: Headcount	R8 795	R10 252	R12 128	R8 742
[In 1995 prices]	$[R 6368]$	$[R 7422]$	[R8 781]	[R6 329]
Per capita expenditure: Full-time	R12 276	R14 199	R15 685	R12 677

[In 1995 prices]	[R8 888]	[R10 280]	[R11 356]	[R9 178]

If we look at the figures for universities in 1995 the subsidy per student is very much the same for Indians, coloured and white students, but for blacks it is much lower (see Table 7). The difference between the highest and lowest subsidy was more than 20%. The high figure for the first three groups can be explained by the fact that those students were more enrolled in natural sciences. While white students were 36.1% of total university students they represented 41.4% of students in the natural sciences. Indian students were 6.8% of total students and 10.8% of those studying in natural sciences. Coloured students represented 5.1% of the total number of students and they were 6.5% of those studying in natural sciences.

Table 7

Expenditure on university education with distinction between human and natural sciences: 1995

	Blacks	Coloureds	Indian	Whites
Enrollment \%	51.9	5.1	6.8	36.1
Expenditure \%	45.1	5.5	7.9	41.4
Per capita expenditure: Headcount	R7 066	R8 814	R9 209	R8 838
Per capita expenditure: Full-time	R9 496	R11 733	R12 688	R12 515

The low figure for black students can be explained by various factors. They represented 51.9% of the total number of students, but they were only 41.2% of students studying in the natural sciences. Their average subsidy figure was further lowered by the low subsidies paid to Unisa and Vista. Almost 50% of black students attended these two institutions. However, their subsidy was artificially increased by the high subsidy per FE student paid to Medunsa (R20 481), North West (R20 296) and Transkei (R13 836). Except for the University of the Witwatersrand (R14 120) no other university received a subsidy of more than R12 400 per student. Clearly, with this method it does seem as though there was a substantial difference between the subsidy paid per black student relatively to the other three groups.

How did the picture changed in 2000? (see Table 8). The number of black students moving into universities did not change at the same rate as the technicons. The number of white and coloured students decreased in this 5-year period, but Indian students increased by more than 16% and blacks by approximately 5%. The high subsidy per Indian student can be explained by the fact that
although they were only 8.0% of the students they represented 13.0% of the students in natural sciences. The same applies to white students that were 32.8% of the students, but were almost 39% of students in natural sciences. Their figure was decreased by the fairly low subsidy (R5 441) that Unisa received per FE student. More than 26\% of FE white students were enrolled at Unisa.

Table 8

Expenditure on university education with distinction between human and natural sciences: 2000

	Blacks	Coloureds	Indian	Whites
Enrollment \%	54.4	4.8	8.0	32.8
Expenditure \%	52.8	5.1	9.0	33.2
Per capita expenditure: Headcount	R12 146	R13 038	R13 525	R12 080
[In 1995 prices]	$[R 8794]$	$[R 9440]$	[R9 792]	[R8 746]
Per capita expenditure: Full-time	R16 986	R18 523	R19 744	R17 694
[In 1995 prices]	[R12 298]	[R13 107]	[R14 947]	[R12 810]

The relatively low subsidy per black student can to a large extend be explained by so many black students taking courses in the human sciences. Although they were more than 54% of the students they represented only about 43% of students in the natural sciences. Their figure is also lowered by the low FE subsidy of Unisa (R5 441) where almost 20\% of black students were enrolled. The black subsidy figures were artificially increased by high FE subsidies to Fort Hare (R18 626), Medunsa (R40 212) and Transkei (R22 878). The difference between the highest (Indian) and the lowest (whites) subsidy per FE student decreased to just above 10\% in 2000.

Concluding remarks

Although a few other options were investigated it did not lead to much different results than the above-mentioned. Therefore only the results of these methods will be summarized, although an
appendix is attached with the same analysis except that Technikon South Africa and Unisa were excluded. The difference in subsidy per FE student at technikons increased from about 10% in 1995 to 20% in 2000 when we use the first method. When a distinction is being made between students in natural and human sciences the difference is bigger. In 1995 it was about 17% and in 2000 approximately 30%. With both methods the gap between the highest and the lowest subsidy paid per student widened over the period under discussion.

With universities the opposite results were achieved. With the first method the difference between the highest and lowest subsidy per FE students was 16% in 1995 that decreased to only 7% in 2000. When a distinction was made between natural and human sciences, the gap decreased from 20% to only 10%. With both methods the difference between subsidies paid per student (per race) was negligible by 2000.

APPENDIX 4A

Table 1b

Expenditure on Technikon education (excluding Technikon South Africa): 1995

	Blacks	Coloureds	Indian	Whites
Enrollment \%	47.9	7.9	6.0	38.4
Expenditure \%	48.9	8.4	6.0	36.7
Per capita expenditure: Headcount	R8 361	R8 330	R6 899	R7 704
Per capita expenditure: Full-time	R10 859	R11 618	R10 533	R10 163

Table 2b

Expenditure on technikon education (excluding Technikon South Africa): 2000

	Blacks	Coloureds	Indian	Whites
Enrollment \%	74.1	6.1	4.4	15.4
Expenditure \%	73.7	6.6	4.7	15.0
Per capita expenditure: Headcount	R11 207	R12 359	R13 368	R10 568
[In 1995 prices]	$[R 8$ 838]	$[R 8$ 948]	$[R 9678]$	$[R 7651]$
Per capita expenditure: Full-time	R14 541	R15 668	R15 705	R14 259
[In 1995 prices]	[R10 527]	[R11 343]	[R11 370]	[R10 323]

Table 3b

Expenditure on university education (excluding Unisa): 1995

	Africans	Coloureds	Indian	Whites
Enrollment \%	53.2	5.5	6.2	35.0
Expenditure \%	46.6	5.4	6.9	41.0
Per capita expenditure: Headcount	R9 612	R10 466	R12 635	R12 281
Per capita expenditure: Full-time	R11 336	R12 638	R14 329	R15 141

Table 4b

Expenditure on university education (excluding Unisa): 2000

	Africans	Coloureds	Indian	Whites
Enrollment \%	56.9	4.8	7.0	31.3
Expenditure \%	55.9	4.8	7.6	31.8
Per capita expenditure: Headcount	R15 633	R15 829	R17 484	R15 657
[In 1995 prices]	$[R 11318]$	$[R 11460]$	$[R 12658]$	$[R 11$ 335]
Per capita expenditure: Full-time	R20 191	R20 529	R22 318	R20 830
[In 1995 prices]	$[R 14618]$	$[R 14863]$	$[R 16$ 154]	[R15 081]

Table 5b

Expenditure on technikon education with distinction between human and natural sciences (excluding Technikon South Africa): 1995

	Blacks	Coloureds	Indian	Whites
Enrollment \%	47.9	7.7	6.0	38.4
Expenditure \%	47.0	8.8	6.6	37.6
Per capita expenditure: Headcount	R8 035	R8 772	R7 586	R7 886
Per capita expenditure: Full-time	R10 436	R12 236	R11 583	R10 402

Table 6b

Expenditure on technikon education with distinction between human and natural sciences (excluding Technikon South Africa): 2000

	Blacks	Coloureds	Indian	Whites
Enrollment \%	74.1	6.1	4.4	15.4
Expenditure \%	71.6	7.0	5.4	15.8
Per capita expenditure: Headcount	R10 921	R13 231	R15 310	R11 081
[In 1995 prices]	$[R 7$ 907]	$[R 9579]$	[R11 084]	[R8 023]
Per capita expenditure: Full-time	R 14170	R16 774	R17 985	R14 950
[In 1995 prices]	$[R 10258]$	$[R 12144]$	$[R 13021]$	[R10 824]

Table 7b

Expenditure on university education with distinction between human and natural sciences (excluding Unisa): 1995

	Blacks	Coloureds	Indian	Whites
Enrollment \%	53.2	5.5	6.2	35.0
Expenditure \%	45.2	5.7	7.7	41.5
Per capita expenditure: Headcount	R9 306	R10 990	R14 106	R12 406
Per capita expenditure: Full-time	R10 974	R13 272	R15 997	R15 296

Table 8b

Expenditure on university education with distinction between human and natural sciences (excluding Unisa): 2000

	Blacks	Coloureds	Indian	Whites
Enrollment \%	56.9	4.8	7.0	31.3
Expenditure \%	53.8	5.1	8.6	32.5
Per capita expenditure: Headcount	R15 056	R16 731	R19 792	R16 044
[In 1995 prices]	[R10 901]	[R12 113]	[R14 329]	[R11 616]
Per capita expenditure: Full-time	R19 445	R21 700	R25 259	R21 345
[In 1995 prices]	[R14 078]	[R15 711]	[R18 287]	[R15 454]

[^0]: ${ }^{1}$ This study is funded by US AID through Nathan Associated.

[^1]: ${ }^{2}$ The term "salary" or "gross income" here and subsequently refers to the annual gross salary plus fringe benefits, transport subsidies and housing subsidies, where these still exist, but excluding the state contribution to the pension fund and medical aid.

[^2]: ${ }^{3}$ Inserting a female dummy in regression 1 showed that female teachers earned on average 2.5% less than their male counterparts, when all the available other variables were considered.

 However, this information is not used in the further analysis.

[^3]: ${ }^{4}$ This study is funded by US AID through Nathan Associated.
 ${ }^{5}$ The latter would include questions about patterns in the frequency of the type of service and the associated cost of the type of service utilized

[^4]: 6 Efforts to use variables common to both the GHS and IES to model nonsalary income proved unsuccessful. The South African Demographic and Health Survey has more detailed information on health utilization than the GHS, but the survey has neither income nor expenditure information.

[^5]: 7 Personnel costs make up almost 70% of running cost
 8 Here actual recurrent expenditure was estimated by excluding any expenditure identified as capital expenditure of expenditure on land and buildings from the total. "Actual" is used here to distinguish what was spent by the institution from budgeted expenditure.

[^6]: ${ }^{10}$ Economics Department, University of Stellenbosch

